題目列表(包括答案和解析)
已知函數(shù)其中
為自然對數(shù)的底數(shù),
.(Ⅰ)設(shè)
,求函數(shù)
的最值;(Ⅱ)若對于任意的
,都有
成立,求
的取值范圍.
【解析】第一問中,當(dāng)時(shí),
,
.結(jié)合表格和導(dǎo)數(shù)的知識判定單調(diào)性和極值,進(jìn)而得到最值。
第二問中,∵,
,
∴原不等式等價(jià)于:,
即, 亦即
分離參數(shù)的思想求解參數(shù)的范圍
解:(Ⅰ)當(dāng)時(shí),
,
.
當(dāng)在
上變化時(shí),
,
的變化情況如下表:
|
|
|
|
|
|
|
|
- |
|
+ |
|
|
|
|
|
|
1/e |
∴時(shí),
,
.
(Ⅱ)∵,
,
∴原不等式等價(jià)于:,
即, 亦即
.
∴對于任意的,原不等式恒成立,等價(jià)于
對
恒成立,
∵對于任意的時(shí),
(當(dāng)且僅當(dāng)
時(shí)取等號).
∴只需,即
,解之得
或
.
因此,的取值范圍是
m | 1-0.01m |
某工廠生產(chǎn)的A種產(chǎn)品進(jìn)入某商場銷售,商場為吸引廠家第一年免收管理費(fèi),因此第一年A種產(chǎn)品定價(jià)為每件70元,年銷售量為11.8萬件.從第二年開始,商場對A種產(chǎn)品征收銷售額的x%的管理費(fèi)(即銷售100元要征收x元),于是該產(chǎn)品定價(jià)每件比第一年增加了元,預(yù)計(jì)年銷售量減少x萬件,要使第二年商場在A種產(chǎn)品經(jīng)營中收取的管理費(fèi)不少于14萬元,則x的取值范圍是
A.2
B.6.5
C.8.8
D.10
已知數(shù)列是各項(xiàng)均不為0的等差數(shù)列,公差為d,
為其前n項(xiàng)和,且滿足
,
.?dāng)?shù)列
滿足
,
,
為數(shù)列
的前n項(xiàng)和.
(1)求數(shù)列的通項(xiàng)公式
和數(shù)列
的前n項(xiàng)和
;
(2)若對任意的,不等式
恒成立,求實(shí)數(shù)
的取值范圍;
(3)是否存在正整數(shù),使得
成等比數(shù)列?若存在,求出所有
的值;若不存在,請說明理由.
【解析】第一問利用在中,令n=1,n=2,
得 即
解得,,
[
又時(shí),
滿足
,
,
第二問,①當(dāng)n為偶數(shù)時(shí),要使不等式恒成立,即需不等式
恒成立.
,等號在n=2時(shí)取得.
此時(shí)
需滿足
.
②當(dāng)n為奇數(shù)時(shí),要使不等式恒成立,即需不等式
恒成立.
是隨n的增大而增大, n=1時(shí)
取得最小值-6.
此時(shí)
需滿足
.
第三問,
若成等比數(shù)列,則
,
即.
由,可得
,即
,
.
(1)(法一)在中,令n=1,n=2,
得 即
解得,,
[
又時(shí),
滿足
,
,
.
(2)①當(dāng)n為偶數(shù)時(shí),要使不等式恒成立,即需不等式
恒成立.
,等號在n=2時(shí)取得.
此時(shí)
需滿足
.
②當(dāng)n為奇數(shù)時(shí),要使不等式恒成立,即需不等式
恒成立.
是隨n的增大而增大, n=1時(shí)
取得最小值-6.
此時(shí)
需滿足
.
綜合①、②可得的取值范圍是
.
(3),
若成等比數(shù)列,則
,
即.
由,可得
,即
,
.
又,且m>1,所以m=2,此時(shí)n=12.
因此,當(dāng)且僅當(dāng)m=2,
n=12時(shí),數(shù)列中的
成等比數(shù)列
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com