題目列表(包括答案和解析)
設(shè)橢圓的左、右頂點(diǎn)分別為
,點(diǎn)
在橢圓上且異于
兩點(diǎn),
為坐標(biāo)原點(diǎn).
(Ⅰ)若直線與
的斜率之積為
,求橢圓的離心率;
(Ⅱ)若,證明直線
的斜率
滿足
【解析】(1)解:設(shè)點(diǎn)P的坐標(biāo)為.由題意,有
①
由,得
,
由,可得
,代入①并整理得
由于,故
.于是
,所以橢圓的離心率
(2)證明:(方法一)
依題意,直線OP的方程為,設(shè)點(diǎn)P的坐標(biāo)為
.
由條件得消去
并整理得
②
由,
及
,
得.
整理得.而
,于是
,代入②,
整理得
由,故
,因此
.
所以.
(方法二)
依題意,直線OP的方程為,設(shè)點(diǎn)P的坐標(biāo)為
.
由P在橢圓上,有
因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012071821180638818491/SYS201207182118494193384555_ST.files/image036.png">,,所以
,即
③
由,
,得
整理得
.
于是,代入③,
整理得
解得,
所以.
設(shè)橢圓(常數(shù)
)的左右焦點(diǎn)分別為
,
是直線
上的兩個(gè)動(dòng)點(diǎn),
.
(1)若,求
的值;
(2)求的最小值.
【解析】第一問中解:設(shè),
則
由得
由
,得
②
第二問易求橢圓的標(biāo)準(zhǔn)方程為:
,
所以,當(dāng)且僅當(dāng)或
時(shí),
取最小值
.
解:設(shè),
……………………1分
則,由
得
①……2分
(1)由,得
② ……………1分
③ ………………………1分
由①、②、③三式,消去,并求得
.
………………………3分
(2)解法一:易求橢圓的標(biāo)準(zhǔn)方程為:
.………………2分
, ……4分
所以,當(dāng)且僅當(dāng)或
時(shí),
取最小值
.…2分
解法二:,
………………4分
所以,當(dāng)且僅當(dāng)或
時(shí),
取最小值
物理得分值y 學(xué)生數(shù) 化學(xué)的分值x |
1分 | 2分 | 3分 | 4分 | 5分 |
1分 | 1 | 3 | 1 | 0 | 1 |
2分 | 1 | 0 | 7 | 5 | 1 |
3分 | 2 | 1 | 0 | 9 | 3 |
4分 | 1 | 2 | 6 | 0 | 1 |
5分 | 0 | 0 | 1 | 1 | 3 |
3 | 5 |
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com