題目列表(包括答案和解析)
已知,設(shè)
和
是方程
的兩個(gè)根,不等式
對(duì)任意實(shí)數(shù)
恒成立;
函數(shù)
有兩個(gè)不同的零點(diǎn).求使“P且Q”為真命題的實(shí)數(shù)
的取值范圍.
【解析】本試題主要考查了命題和函數(shù)零點(diǎn)的運(yùn)用。由題設(shè)x1+x2=a,x1x2=-2,
∴|x1-x2|==
.
當(dāng)a∈[1,2]時(shí),的最小值為3. 當(dāng)a∈[1,2]時(shí),
的最小值為3.
要使|m-5|≤|x1-x2|對(duì)任意實(shí)數(shù)a∈[1,2]恒成立,只須|m-5|≤3,即2≤m≤8.
由已知,得f(x)=3x2+2mx+m+=0的判別式
Δ=4m2-12(m+)=4m2-12m-16>0,
得m<-1或m>4.
可得到要使“P∧Q”為真命題,只需P真Q真即可。
解:由題設(shè)x1+x2=a,x1x2=-2,
∴|x1-x2|==
.
當(dāng)a∈[1,2]時(shí),的最小值為3.
要使|m-5|≤|x1-x2|對(duì)任意實(shí)數(shù)a∈[1,2]恒成立,只須|m-5|≤3,即2≤m≤8.
由已知,得f(x)=3x2+2mx+m+=0的判別式
Δ=4m2-12(m+)=4m2-12m-16>0,
得m<-1或m>4.
綜上,要使“P∧Q”為真命題,只需P真Q真,即
解得實(shí)數(shù)m的取值范圍是(4,8]
已知二次函數(shù)的二次項(xiàng)系數(shù)為
,且不等式
的解集為
,
(1)若方程有兩個(gè)相等的根,求
的解析式;
(2)若的最大值為正數(shù),求
的取值范圍.
【解析】第一問(wèn)中利用∵f(x)+2x>0的解集為(1,3),
設(shè)出二次函數(shù)的解析式,然后利用判別式得到a的值。
第二問(wèn)中,
解:(1)∵f(x)+2x>0的解集為(1,3),
①
由方程
②
∵方程②有兩個(gè)相等的根,
∴,
即5a2-4a-1=0,解得a=1(舍) 或 a=-1/5
a=-1/5代入①得:
(2)由
由 解得:
故當(dāng)f(x)的最大值為正數(shù)時(shí),實(shí)數(shù)a的取值范圍是
如圖,已知橢圓的焦點(diǎn)和上頂點(diǎn)分別為
、
、
,我們稱
為橢圓
的特征三角形.如果兩個(gè)橢圓的特征三角形是相似的,則稱這兩個(gè)橢圓是“相似橢圓”,且三角形的相似比即為橢圓的相似比.
(1)已知橢圓和
,判斷
與
是否相似,如果相似則求出
與
的相似比,若不相似請(qǐng)說(shuō)明理由;
(2)若與橢圓相似且半短軸長(zhǎng)為
的橢圓為
,且直線
與橢圓為
相交于兩點(diǎn)
(異于端點(diǎn)),試問(wèn):當(dāng)
面積最大時(shí),
是否與
有關(guān)?并證明你的結(jié)論.
(3)根據(jù)與橢圓相似且半短軸長(zhǎng)為
的橢圓
的方程,提出你認(rèn)為有價(jià)值的相似橢圓之間的三種性質(zhì)(不需證明);
已知點(diǎn)為圓
上的動(dòng)點(diǎn),且
不在
軸上,
軸,垂足為
,線段
中點(diǎn)
的軌跡為曲線
,過(guò)定點(diǎn)
任作一條與
軸不垂直的直線
,它與曲線
交于
、
兩點(diǎn)。
(I)求曲線的方程;
(II)試證明:在軸上存在定點(diǎn)
,使得
總能被
軸平分
【解析】第一問(wèn)中設(shè)為曲線
上的任意一點(diǎn),則點(diǎn)
在圓
上,
∴,曲線
的方程為
第二問(wèn)中,設(shè)點(diǎn)的坐標(biāo)為
,直線
的方程為
, ………………3分
代入曲線的方程
,可得
∵,∴
確定結(jié)論直線與曲線
總有兩個(gè)公共點(diǎn).
然后設(shè)點(diǎn),
的坐標(biāo)分別
,
,則
,
要使被
軸平分,只要
得到。
(1)設(shè)為曲線
上的任意一點(diǎn),則點(diǎn)
在圓
上,
∴,曲線
的方程為
. ………………2分
(2)設(shè)點(diǎn)的坐標(biāo)為
,直線
的方程為
, ………………3分
代入曲線的方程
,可得
,……5分
∵,∴
,
∴直線與曲線
總有兩個(gè)公共點(diǎn).(也可根據(jù)點(diǎn)M在橢圓
的內(nèi)部得到此結(jié)論)
………………6分
設(shè)點(diǎn),
的坐標(biāo)分別
,
,則
,
要使被
軸平分,只要
,
………………9分
即,
, ………………10分
也就是,
,
即,即只要
………………12分
當(dāng)時(shí),(*)對(duì)任意的s都成立,從而
總能被
軸平分.
所以在x軸上存在定點(diǎn),使得
總能被
軸平分
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com