8天堂资源在线,国产成人久久av免费高潮,国产精品亚洲综合色区韩国,国产欧美va天堂在线观看视频,xx色综合

17. 查看更多

 

題目列表(包括答案和解析)

(本小題滿分12分)二次函數的圖象經過三點.

(1)求函數的解析式(2)求函數在區(qū)間上的最大值和最小值

查看答案和解析>>

(本小題滿分12分)已知等比數列{an}中, 

   (Ⅰ)求數列{an}的通項公式an;

   (Ⅱ)設數列{an}的前n項和為Sn,證明:;

   (Ⅲ)設,證明:對任意的正整數n、m,均有

查看答案和解析>>

(本小題滿分12分)已知函數,其中a為常數.

   (Ⅰ)若當恒成立,求a的取值范圍;

   (Ⅱ)求的單調區(qū)間.

查看答案和解析>>

(本小題滿分12分)

甲、乙兩籃球運動員進行定點投籃,每人各投4個球,甲投籃命中的概率為,乙投籃命中的概率為

   (Ⅰ)求甲至多命中2個且乙至少命中2個的概率;

   (Ⅱ)若規(guī)定每投籃一次命中得3分,未命中得-1分,求乙所得分數η的概率分布和數學期望.

查看答案和解析>>

(本小題滿分12分)已知是橢圓的兩個焦點,O為坐標原點,點在橢圓上,且,圓O是以為直徑的圓,直線與圓O相切,并且與橢圓交于不同的兩點A、B.

   (1)求橢圓的標準方程;w.w.w.k.s.5.u.c.o.m        

   (2)當時,求弦長|AB|的取值范圍.

查看答案和解析>>

一、選擇題:(每題5分,共60分)

<style id="ns168"></style>
    <blockquote id="ns168"></blockquote>

    20080416

    二、填空題:每題5分,共20分)

    13.[-5,7]; 14.();   15.(1,2)(2,3);    16.②③④

    17.解:(1),

    .又,.(6分)

       (2)由

    ,.(6分)

    18.證明:(1)因為在正方形ABCD中,AC=2

      <ruby id="ns168"></ruby>

          可得:在△PAB中,PA2+AB2=PB2=6。

          所以PA⊥AB

          同理可證PA⊥AD

          故PA⊥平面ABCD (4分)

             (2)取PE中點M,連接FM,BM,

          連接BD交AC于O,連接OE

          ∵F,M分別是PC,PF的中點,

          ∴FM∥CE,

          又FM面AEC,CE面AEC

          ∴FM∥面AEC

          又E是DM的中點

          OE∥BM,OE面AEC,BM面AEC

          ∴BM∥面AEC且BM∩FM=M

          ∴平面BFM∥平面ACE

          又BF平面BFM,∴BF∥平面ACE (4分)

             (3)連接FO,則FO∥PA,因為PA⊥平面ABCD,則FO⊥平面ABCD,所以FO=1,

          SㄓACD=1,

              ∴VFACD=VF――ACD=  (4分)

          19. (1)由已知圓的標準方程為:(x-aCosφ)2+(y-aSinφ)2=a2(a>0)

          設圓的圓心坐標為(x,y),則(為參數),

          消參數得圓心的軌跡方程為:x2+y2=a2,…………(5分)

             (2)有方程組得公共弦的方程:

          圓X2+Y2=a2的圓心到公共弦的距離d=,(定值)

          ∴弦長l=(定值)               (5分)

          20.解:(1)

          時,取最小值,

          .(6分)

             (2)令

          ,(不合題意,舍去).

          變化時,的變化情況如下表:

          遞增

          極大值

          遞減

          內有最大值

          內恒成立等價于內恒成立,

          即等價于,

          所以的取值范圍為.(6分)

          21.解:(1)

          ,

          ,

          數列是首項為,公比為的等比數列,

          時,,

               (6分)

             (2),

          時,;

          時,,…………①

          ,………………………②

          得:

          也滿足上式,

          .(6分)

          22.解:(1)由題意橢圓的離心率

                  

          ∴橢圓方程為……2分

          又點在橢圓上

                   ∴橢圓的方程為(4分)

          (2)設

          消去并整理得……6分

          ∵直線與橢圓有兩個交點

          ,即……8分

          中點的坐標為……10分

          的垂直平分線方程:

          ……12分

          將上式代入得

             即 

          的取值范圍為…………(8分)

           

           

           

          <blockquote id="ns168"><p id="ns168"></p></blockquote>