題目列表(包括答案和解析)
b |
a |
c |
a |
已知過點(diǎn)的動(dòng)直線
與拋物線
相交于
兩點(diǎn).當(dāng)直線
的斜率是
時(shí),
.
(1)求拋物線的方程;
(2)設(shè)線段的中垂線在
軸上的截距為
,求
的取值范圍.
【解析】(1)B,C
,當(dāng)直線
的斜率是
時(shí),
的方程為
,即
(1’)
聯(lián)立 得
,
(3’)
由已知 ,
(4’)
由韋達(dá)定理可得G方程為
(5’)
(2)設(shè):
,BC中點(diǎn)坐標(biāo)為
(6’)
得
由
得
(8’)
BC中垂線為 (10’)
(11’)
橢圓的左、右焦點(diǎn)分別為
,一條直線
經(jīng)過點(diǎn)
與橢圓交于
兩點(diǎn).
⑴求的周長(zhǎng);
⑵若的傾斜角為
,求
的面積.
【解析】(1)根據(jù)橢圓的定義的周長(zhǎng)等于4a.
(2)設(shè),則
,然后直線l的方程與橢圓方程聯(lián)立,消去x,利用韋達(dá)定理可求出所求三角形的面積.
過拋物線的對(duì)稱軸上的定點(diǎn)
,作直線
與拋物線相交于
兩點(diǎn).
(I)試證明兩點(diǎn)的縱坐標(biāo)之積為定值;
(II)若點(diǎn)是定直線
上的任一點(diǎn),試探索三條直線
的斜率之間的關(guān)系,并給出證明.
【解析】本題主要考查拋物線與直線的位置關(guān)系以及發(fā)現(xiàn)問題和解決問題的能力.
(1)中證明:設(shè)下證之:設(shè)直線AB的方程為: x=ty+m與y2=2px聯(lián)立得消去x得y2=2pty-2pm=0,由韋達(dá)定理得
(2)中:因?yàn)槿龡l直線AN,MN,BN的斜率成等差數(shù)列,下證之
設(shè)點(diǎn)N(-m,n),則直線AN的斜率KAN=,直線BN的斜率KBN=
KAN+KBN=+
本題主要考查拋物線與直線的位置關(guān)系以及發(fā)現(xiàn)問題和解決問題的能力.
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com