題目列表(包括答案和解析)
函數在同一個周期內,當
時,
取最大值1,當
時,
取最小值
。
(1)求函數的解析式
(2)函數的圖象經過怎樣的變換可得到
的圖象?
(3)若函數滿足方程
求在
內的所有實數根之和.
【解析】第一問中利用
又因
又
函數
第二問中,利用的圖象向右平移
個單位得
的圖象
再由圖象上所有點的橫坐標變?yōu)樵瓉淼?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070911025203078536/SYS201207091103422182387233_ST.files/image020.png">.縱坐標不變,得到
的圖象,
第三問中,利用三角函數的對稱性,的周期為
在
內恰有3個周期,
并且方程在
內有6個實根且
同理,可得結論。
解:(1)
又因
又
函數
(2)的圖象向右平移
個單位得
的圖象
再由圖象上所有點的橫坐標變?yōu)樵瓉淼?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070911025203078536/SYS201207091103422182387233_ST.files/image020.png">.縱坐標不變,得到
的圖象,
(3)的周期為
在
內恰有3個周期,
并且方程在
內有6個實根且
同理,
故所有實數之和為
已知函數f(x)=ex-ax,其中a>0.
(1)若對一切x∈R,f(x) 1恒成立,求a的取值集合;
(2)在函數f(x)的圖像上去定點A(x1, f(x1)),B(x2, f(x2))(x1<x2),記直線AB的斜率為k,證明:存在x0∈(x1,x2),使恒成立.
【解析】解:令
.
當時
單調遞減;當
時
單調遞增,故當
時,
取最小值
于是對一切恒成立,當且僅當
. 、
令則
當時,
單調遞增;當
時,
單調遞減.
故當時,
取最大值
.因此,當且僅當
時,①式成立.
綜上所述,的取值集合為
.
(Ⅱ)由題意知,令
則
令,則
.當
時,
單調遞減;當
時,
單調遞增.故當
,
即
從而,
又
所以因為函數
在區(qū)間
上的圖像是連續(xù)不斷的一條曲線,所以存在
使
即
成立.
【點評】本題考查利用導函數研究函數單調性、最值、不等式恒成立問題等,考查運算能力,考查分類討論思想、函數與方程思想等數學方法.第一問利用導函數法求出取最小值
對一切x∈R,f(x)
1恒成立轉化為
從而得出求a的取值集合;第二問在假設存在的情況下進行推理,然后把問題歸結為一個方程是否存在解的問題,通過構造函數,研究這個函數的性質進行分析判斷.
已知函數,
.
(Ⅰ)若函數依次在
處取到極值.求
的取值范圍;
(Ⅱ)若存在實數,使對任意的
,不等式
恒成立.求正整數
的最大值.
【解析】第一問中利用導數在在處取到極值點可知導數為零可以解得方程有三個不同的實數根來分析求解。
第二問中,利用存在實數,使對任意的
,不等式
恒成立轉化為
,恒成立,分離參數法求解得到范圍。
解:(1)
①
(2)不等式 ,即
,即
.
轉化為存在實數,使對任意的
,不等式
恒成立.
即不等式在
上恒成立.
即不等式在
上恒成立.
設,則.
設,則
,因為
,有
.
故在區(qū)間
上是減函數。又
故存在,使得
.
當時,有
,當
時,有
.
從而在區(qū)間
上遞增,在區(qū)間
上遞減.
又[來源:]
所以當時,恒有
;當
時,恒有
;
故使命題成立的正整數m的最大值為5
已知函數(其中
)的圖象與x軸的交點中,相鄰兩個交點之間的距離為
,且圖象上一個最低點為
.
(1)求的解析式; (2)當
,求
的值域.
【解析】第一問利用三角函數的性質得到)由最低點為得A=2. 由x軸上相鄰的兩個交點之間的距離為
得
=
,即
,
由點
在圖像上的
第二問中,
當=
,即
時,
取得最大值2;當
即時,
取得最小值-1,故
的值域為[-1,2]
歐拉(Euler),瑞士數學家及自然科學家.1707年4月15日出生于瑞士的巴塞爾,1783年9月18日于俄國彼得堡去逝.歐拉出生于牧師家庭,自幼受父親的教育,13歲時入讀巴塞爾大學,15歲大學畢業(yè),16歲獲碩士學位.
歐拉是18世紀數學界最杰出的人物之一,他不但為數學界做出了巨大的貢獻,更把數學推至幾乎整個物理的領域.他是數學史上最多產的數學家,平均每年寫出八百多頁的論文,還寫了大量的力學、分析學、幾何學、變分法等的課本,《無窮小分析引論》、《微分學原理》、《積分學原理》等都成為數學中的經典著作.
歐拉對數學符號的創(chuàng)立及推廣起了積極的作用.比如用e表示自然對數的底,用i表示-1,用f(x)作為函數的符號,π雖不是歐拉首先提出的,但是在歐拉倡導下推廣普及的.尤為不可思議的是歐拉將數學中最為活躍的五個數1,0,π,e,i竟用一個美妙絕倫的公式聯系了起來:eiπ+1=0(歐拉指數公式),在西方數學界甚至認為此公式不亞于神的力量.
歐拉對數學的研究如此廣泛,因此在許多數學的分支中也可經常見到以他的名字命名的重要常數、公式和定理.
1.你對歐拉(Euler)了解嗎?請查閱歐拉(Euler)的故事,對于他“13歲時入讀巴塞爾大學,15歲大學畢業(yè),16歲獲碩士學位”,你有何感觸?
2.作為新時代的青年,你做好將來為科學事業(yè)做貢獻的思想準備了嗎?
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com