題目列表(包括答案和解析)
|
|
5x+1 |
2x-3 |
已知遞增等差數(shù)列滿足:
,且
成等比數(shù)列.
(1)求數(shù)列的通項公式
;
(2)若不等式對任意
恒成立,試猜想出實數(shù)
的最小值,并證明.
【解析】本試題主要考查了數(shù)列的通項公式的運用以及數(shù)列求和的運用。第一問中,利用設數(shù)列公差為
,
由題意可知,即
,解得d,得到通項公式,第二問中,不等式等價于
,利用當
時,
;當
時,
;而
,所以猜想,
的最小值為
然后加以證明即可。
解:(1)設數(shù)列公差為
,由題意可知
,即
,
解得或
(舍去). …………3分
所以,. …………6分
(2)不等式等價于,
當時,
;當
時,
;
而,所以猜想,
的最小值為
. …………8分
下證不等式對任意
恒成立.
方法一:數(shù)學歸納法.
當時,
,成立.
假設當時,不等式
成立,
當時,
,
…………10分
只要證 ,只要證
,
只要證 ,只要證
,
只要證 ,顯然成立.所以,對任意
,不等式
恒成立.…14分
方法二:單調(diào)性證明.
要證
只要證 ,
設數(shù)列的通項公式
, …………10分
, …………12分
所以對,都有
,可知數(shù)列
為單調(diào)遞減數(shù)列.
而,所以
恒成立,
故的最小值為
.
b2+c2-a2 |
2bc |
a2+c2-b2 |
2ac |
已知二次函數(shù)的二次項系數(shù)為
,且不等式
的解集為
,
(1)若方程有兩個相等的根,求
的解析式;
(2)若的最大值為正數(shù),求
的取值范圍.
【解析】第一問中利用∵f(x)+2x>0的解集為(1,3),
設出二次函數(shù)的解析式,然后利用判別式得到a的值。
第二問中,
解:(1)∵f(x)+2x>0的解集為(1,3),
①
由方程
②
∵方程②有兩個相等的根,
∴,
即5a2-4a-1=0,解得a=1(舍) 或 a=-1/5
a=-1/5代入①得:
(2)由
由 解得:
故當f(x)的最大值為正數(shù)時,實數(shù)a的取值范圍是
如圖,已知圓錐體的側(cè)面積為
,底面半徑
和
互相垂直,且
,
是母線
的中點.
(1)求圓錐體的體積;
(2)異面直線與
所成角的大。ńY(jié)果用反三角函數(shù)表示).
【解析】本試題主要考查了圓錐的體積和異面直線的所成的角的大小的求解。
第一問中,由題意,得
,故
從而體積.2中取OB中點H,聯(lián)結(jié)PH,AH.
由P是SB的中點知PH//SO,則(或其補角)就是異面直線SO與PA所成角.
由SO平面OAB,
PH
平面OAB,PH
AH.在
OAH中,由OA
OB得
;
在中,
,PH=1/2SB=2,
,
則,所以異面直線SO與P成角的大arctan
解:(1)由題意,得
,
故從而體積
.
(2)如圖2,取OB中點H,聯(lián)結(jié)PH,AH.
由P是SB的中點知PH//SO,則(或其補角)就是異面直線SO與PA所成角.
由SO平面OAB,
PH
平面OAB,PH
AH.
在OAH中,由OA
OB得
;
在中,
,PH=1/2SB=2,
,
則,所以異面直線SO與P成角的大arctan
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com