題目列表(包括答案和解析)
(14分)設(shè)數(shù)列的前
項和為
。
(I)求證:是等差數(shù)列;
(Ⅱ)設(shè)是數(shù)列
的前
項和,求
;
(Ⅲ)求使對所有的
恒成立的整數(shù)
的取值集合。
設(shè)數(shù)列{an}的前n項和Sn=n2-4n+4.
(1)求數(shù)列{an}的通項公式;
(2)設(shè)各項均不為0的數(shù)列{bn}中,所有滿足bi?bi+1<0的整數(shù)i的個數(shù)稱為這個數(shù)列{bn}的變號數(shù),令,求數(shù)列{bn}的變號數(shù);
(3)試求實數(shù)λ的取值范圍,使得不等式對一切
恒成立.
已知函數(shù),
.
(Ⅰ)若函數(shù)依次在
處取到極值.求
的取值范圍;
(Ⅱ)若存在實數(shù),使對任意的
,不等式
恒成立.求正整數(shù)
的最大值.
【解析】第一問中利用導(dǎo)數(shù)在在處取到極值點可知導(dǎo)數(shù)為零可以解得方程有三個不同的實數(shù)根來分析求解。
第二問中,利用存在實數(shù),使對任意的
,不等式
恒成立轉(zhuǎn)化為
,恒成立,分離參數(shù)法求解得到范圍。
解:(1)
①
(2)不等式 ,即
,即
.
轉(zhuǎn)化為存在實數(shù),使對任意的
,不等式
恒成立.
即不等式在
上恒成立.
即不等式在
上恒成立.
設(shè),則.
設(shè),則
,因為
,有
.
故在區(qū)間
上是減函數(shù)。又
故存在,使得
.
當(dāng)時,有
,當(dāng)
時,有
.
從而在區(qū)間
上遞增,在區(qū)間
上遞減.
又[來源:]
所以當(dāng)時,恒有
;當(dāng)
時,恒有
;
故使命題成立的正整數(shù)m的最大值為5
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com