題目列表(包括答案和解析)
已知曲線的參數(shù)方程是
(
是參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),
軸的正半軸為極軸建立極坐標(biāo)系,曲線
:的極坐標(biāo)方程是
=2,正方形ABCD的頂點(diǎn)都在
上,且A,B,C,D依逆時(shí)針次序排列,點(diǎn)A的極坐標(biāo)為(2,
).
(Ⅰ)求點(diǎn)A,B,C,D的直角坐標(biāo);
(Ⅱ)設(shè)P為上任意一點(diǎn),求
的取值范圍.
【命題意圖】本題考查了參數(shù)方程與極坐標(biāo),是容易題型.
【解析】(Ⅰ)由已知可得,
,
,
,
即A(1,),B(-
,1),C(―1,―
),D(
,-1),
(Ⅱ)設(shè),令
=
,
則=
=
,
∵,∴
的取值范圍是[32,52]
,
,
為常數(shù),離心率為
的雙曲線
:
上的動(dòng)點(diǎn)
到兩焦點(diǎn)的距離之和的最小值為
,拋物線
:
的焦點(diǎn)與雙曲線
的一頂點(diǎn)重合。(Ⅰ)求拋物線
的方程;(Ⅱ)過直線
:
(
為負(fù)常數(shù))上任意一點(diǎn)
向拋物線
引兩條切線,切點(diǎn)分別為
、
,坐標(biāo)原點(diǎn)
恒在以
為直徑的圓內(nèi),求實(shí)數(shù)
的取值范圍。
【解析】第一問中利用由已知易得雙曲線焦距為,離心率為
,則長(zhǎng)軸長(zhǎng)為2,故雙曲線的上頂點(diǎn)為
,所以拋物線
的方程
第二問中,為
,
,
,
故直線的方程為
,即
,
所以,同理可得:
借助于根與系數(shù)的關(guān)系得到即,
是方程
的兩個(gè)不同的根,所以
由已知易得,即
解:(Ⅰ)由已知易得雙曲線焦距為,離心率為
,則長(zhǎng)軸長(zhǎng)為2,故雙曲線的上頂點(diǎn)為
,所以拋物線
的方程
(Ⅱ)設(shè)為
,
,
,
故直線的方程為
,即
,
所以,同理可得:
,
即,
是方程
的兩個(gè)不同的根,所以
由已知易得,即
b2+c2-a2 |
2bc |
a2+c2-b2 |
2ac |
x |
x+2 |
x |
x+2 |
x |
3x+4 |
x |
7x+8 |
x |
(2n-1)x+2n |
x |
(2n-1)x+2n |
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com