題目列表(包括答案和解析)
(本小題15分)
已知橢圓C:,點(diǎn)A、B分別是橢圓C的左頂點(diǎn)和上頂點(diǎn),直線AB與圓G:
(
是橢圓的焦半距)相離,P是直線AB上一動(dòng)點(diǎn),過點(diǎn)P作圓G的兩切線,切點(diǎn)分別為M、N.
(1)若橢圓C經(jīng)過兩點(diǎn)、
,求橢圓C的方程;
(2)當(dāng)為定值時(shí),求證:直線MN經(jīng)過一定點(diǎn)E,并求
的值(O是坐標(biāo)原點(diǎn));
(3)若存在點(diǎn)P使得△PMN為正三角形,試求橢圓離心率的取值范圍.
(本小題滿分15分)如圖,已知圓O:x2+y2=2交x軸于A,B兩點(diǎn),曲線C是以AB為長軸,離心率為
的橢圓,其右焦點(diǎn)為F.若點(diǎn)P(-1,1)為圓O上一點(diǎn),連結(jié)PF,過原點(diǎn)O作直線PF的垂線交橢圓C的右準(zhǔn)線l于點(diǎn)Q.(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)證明:直線PQ與圓O相切.
(本小題滿分15分)已知橢圓的左焦點(diǎn)為F,左右頂點(diǎn)分別為A、C,
上頂點(diǎn)為B,過F,B,C三點(diǎn)作,其中圓心P的坐標(biāo)為
.
(1) 若橢圓的離心率,求
的方程;
(2)若的圓心在直線
上,求橢圓的方程.
(本小題滿分15分)如圖,已知圓O:x2+y2=2交x軸于A,B兩點(diǎn),曲線C是以AB為長軸,離心率為的橢圓,其右焦點(diǎn)為F.若點(diǎn)P(-1,1)為圓O上一點(diǎn),
連結(jié)PF,過原點(diǎn)O作直線PF的垂線交橢圓C的
右準(zhǔn)線l于點(diǎn)Q.(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)證明:直線PQ與圓O相切.
(本小題滿分15分)已知橢圓的左焦點(diǎn)為F,左右頂點(diǎn)分別為A、C,
上頂點(diǎn)為B,過F,B,C三點(diǎn)作,其中圓心P的坐標(biāo)為
.
(1) 若橢圓的離心率,求
的方程;
(2)若的圓心在直線
上,求橢圓的方程.
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com