題目列表(包括答案和解析)
已知
(1)求函數(shù)在
上的最小值
(2)對(duì)一切的恒成立,求實(shí)數(shù)a的取值范圍
(3)證明對(duì)一切,都有
成立
【解析】第一問(wèn)中利用
當(dāng)
時(shí),
在
單調(diào)遞減,在
單調(diào)遞增
,當(dāng)
,即
時(shí),
,
第二問(wèn)中,,則
設(shè)
,
則,
單調(diào)遞增,
,
,
單調(diào)遞減,
,因?yàn)閷?duì)一切
,
恒成立,
第三問(wèn)中問(wèn)題等價(jià)于證明,
,
由(1)可知,
的最小值為
,當(dāng)且僅當(dāng)x=
時(shí)取得
設(shè),
,則
,易得
。當(dāng)且僅當(dāng)x=1時(shí)取得.從而對(duì)一切
,都有
成立
解:(1)當(dāng)
時(shí),
在
單調(diào)遞減,在
單調(diào)遞增
,當(dāng)
,即
時(shí),
,
…………4分
(2),則
設(shè)
,
則,
單調(diào)遞增,
,
,
單調(diào)遞減,
,因?yàn)閷?duì)一切
,
恒成立,
…………9分
(3)問(wèn)題等價(jià)于證明,
,
由(1)可知,
的最小值為
,當(dāng)且僅當(dāng)x=
時(shí)取得
設(shè),
,則
,易得
。當(dāng)且僅當(dāng)x=1時(shí)取得.從而對(duì)一切
,都有
成立
已知函數(shù).
(Ⅰ)求函數(shù)的單調(diào)遞增區(qū)間;
(Ⅱ)當(dāng)時(shí),在曲線
上是否存在兩點(diǎn)
,使得曲線在
兩點(diǎn)處的切線均與直線
交于同一點(diǎn)?若存在,求出交點(diǎn)縱坐標(biāo)的取值范圍;若不存在,請(qǐng)說(shuō)明理由;
(Ⅲ)若在區(qū)間
存在最大值
,試構(gòu)造一個(gè)函數(shù)
,使得
同時(shí)滿足以下三個(gè)條件:①定義域
,且
;②當(dāng)
時(shí),
;③在
中使
取得最大值
時(shí)的
值,從小到大組成等差數(shù)列.(只要寫(xiě)出函數(shù)
即可)
已知函數(shù).
(Ⅰ)求函數(shù)的單調(diào)遞增區(qū)間;
(Ⅱ)當(dāng)時(shí),在曲線
上是否存在兩點(diǎn)
,使得曲線在
兩點(diǎn)處的切線均與直線
交于同一點(diǎn)?若存在,求出交點(diǎn)縱坐標(biāo)的取值范圍;若不存在,請(qǐng)說(shuō)明理由;
(Ⅲ)若在區(qū)間
存在最大值
,試構(gòu)造一個(gè)函數(shù)
,使得
同時(shí)滿足以下三個(gè)條件:①定義域
,且
;②當(dāng)
時(shí),
;③在
中使
取得最大值
時(shí)的
值,從小到大組成等差數(shù)列.(只要寫(xiě)出函數(shù)
即可)
已知函數(shù)(
為實(shí)數(shù)).
(Ⅰ)當(dāng)時(shí),求
的最小值;
(Ⅱ)若在
上是單調(diào)函數(shù),求
的取值范圍.
【解析】第一問(wèn)中由題意可知:. ∵
∴
∴
.
當(dāng)時(shí),
;
當(dāng)
時(shí),
. 故
.
第二問(wèn).
當(dāng)時(shí),
,在
上有
,
遞增,符合題意;
令,則
,∴
或
在
上恒成立.轉(zhuǎn)化后解決最值即可。
解:(Ⅰ) 由題意可知:. ∵
∴
∴
.
當(dāng)時(shí),
;
當(dāng)
時(shí),
. 故
.
(Ⅱ) .
當(dāng)時(shí),
,在
上有
,
遞增,符合題意;
令,則
,∴
或
在
上恒成立.∵二次函數(shù)
的對(duì)稱(chēng)軸為
,且
∴或
或
或
或
. 綜上
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com