題目列表(包括答案和解析)
設(shè)函數(shù).
(I)求的單調(diào)區(qū)間;
(II)當0<a<2時,求函數(shù)在區(qū)間
上的最小值.
【解析】第一問定義域為真數(shù)大于零,得到.
.
令,則
,所以
或
,得到結(jié)論。
第二問中, (
).
.
因為0<a<2,所以,
.令
可得
.
對參數(shù)討論的得到最值。
所以函數(shù)在
上為減函數(shù),在
上為增函數(shù).
(I)定義域為. ………………………1分
.
令,則
,所以
或
. ……………………3分
因為定義域為,所以
.
令,則
,所以
.
因為定義域為,所以
. ………………………5分
所以函數(shù)的單調(diào)遞增區(qū)間為,
單調(diào)遞減區(qū)間為.
………………………7分
(II) (
).
.
因為0<a<2,所以,
.令
可得
.…………9分
所以函數(shù)在
上為減函數(shù),在
上為增函數(shù).
①當,即
時,
在區(qū)間上,
在
上為減函數(shù),在
上為增函數(shù).
所以. ………………………10分
②當,即
時,
在區(qū)間
上為減函數(shù).
所以.
綜上所述,當時,
;
當時,
已知函數(shù)在
處取得極值2.
⑴ 求函數(shù)的解析式;
⑵ 若函數(shù)在區(qū)間
上是單調(diào)函數(shù),求實數(shù)m的取值范圍;
【解析】第一問中利用導數(shù)
又f(x)在x=1處取得極值2,所以,
所以
第二問中,
因為,又f(x)的定義域是R,所以由
,得-1<x<1,所以f(x)在[-1,1]上單調(diào)遞增,在
上單調(diào)遞減,當f(x)在區(qū)間(m,2m+1)上單調(diào)遞增,則有
,得
解:⑴ 求導,又f(x)在x=1處取得極值2,所以
,即
,所以
…………6分
⑵ 因為,又f(x)的定義域是R,所以由
,得-1<x<1,所以f(x)在[-1,1]上單調(diào)遞增,在
上單調(diào)遞減,當f(x)在區(qū)間(m,2m+1)上單調(diào)遞增,則有
,得
, …………9分
當f(x)在區(qū)間(m,2m+1)上單調(diào)遞減,則有
得
…………12分
.綜上所述,當時,f(x)在(m,2m+1)上單調(diào)遞增,當
時,f(x)在(m,2m+1)上單調(diào)遞減;則實數(shù)m的取值范圍是
或
如圖,,
,…,
,…是曲線
上的點,
,
,…,
,…是
軸正半軸上的點,且
,
,…,
,…
均為斜邊在
軸上的等腰直角三角形(
為坐標原點).
(1)寫出、
和
之間的等量關(guān)系,以及
、
和
之間的等量關(guān)系;
(2)求證:(
);
(3)設(shè),對所有
,
恒成立,求實數(shù)
的取值范圍.
【解析】第一問利用有,
得到
第二問證明:①當時,可求得
,命題成立;②假設(shè)當
時,命題成立,即有
則當
時,由歸納假設(shè)及
,
得
第三問
.………………………2分
因為函數(shù)在區(qū)間
上單調(diào)遞增,所以當
時,
最大為
,即
解:(1)依題意,有,
,………………4分
(2)證明:①當時,可求得
,命題成立;
……………2分
②假設(shè)當時,命題成立,即有
,……………………1分
則當時,由歸納假設(shè)及
,
得.
即
解得(
不合題意,舍去)
即當時,命題成立. …………………………………………4分
綜上所述,對所有,
. ……………………………1分
(3)
.………………………2分
因為函數(shù)在區(qū)間
上單調(diào)遞增,所以當
時,
最大為
,即
.……………2分
由題意,有.
所以,
已知函數(shù)f(x)=ex-ax,其中a>0.
(1)若對一切x∈R,f(x) 1恒成立,求a的取值集合;
(2)在函數(shù)f(x)的圖像上去定點A(x1, f(x1)),B(x2, f(x2))(x1<x2),記直線AB的斜率為k,證明:存在x0∈(x1,x2),使恒成立.
【解析】解:令
.
當時
單調(diào)遞減;當
時
單調(diào)遞增,故當
時,
取最小值
于是對一切恒成立,當且僅當
. ①
令則
當時,
單調(diào)遞增;當
時,
單調(diào)遞減.
故當時,
取最大值
.因此,當且僅當
時,①式成立.
綜上所述,的取值集合為
.
(Ⅱ)由題意知,令
則
令,則
.當
時,
單調(diào)遞減;當
時,
單調(diào)遞增.故當
,
即
從而,
又
所以因為函數(shù)
在區(qū)間
上的圖像是連續(xù)不斷的一條曲線,所以存在
使
即
成立.
【點評】本題考查利用導函數(shù)研究函數(shù)單調(diào)性、最值、不等式恒成立問題等,考查運算能力,考查分類討論思想、函數(shù)與方程思想等數(shù)學方法.第一問利用導函數(shù)法求出取最小值
對一切x∈R,f(x)
1恒成立轉(zhuǎn)化為
從而得出求a的取值集合;第二問在假設(shè)存在的情況下進行推理,然后把問題歸結(jié)為一個方程是否存在解的問題,通過構(gòu)造函數(shù),研究這個函數(shù)的性質(zhì)進行分析判斷.
設(shè)函數(shù)
(1)當時,求曲線
處的切線方程;
(2)當時,求
的極大值和極小值;
(3)若函數(shù)在區(qū)間
上是增函數(shù),求實數(shù)
的取值范圍.
【解析】(1)中,先利用,表示出點
的斜率值
這樣可以得到切線方程。(2)中,當
,再令
,利用導數(shù)的正負確定單調(diào)性,進而得到極值。(3)中,利用函數(shù)在給定區(qū)間遞增,說明了
在區(qū)間
導數(shù)恒大于等于零,分離參數(shù)求解范圍的思想。
解:(1)當……2分
∴
即為所求切線方程!4分
(2)當
令………………6分
∴遞減,在(3,+
)遞增
∴的極大值為
…………8分
(3)
①若上單調(diào)遞增。∴滿足要求。…10分
②若
∵恒成立,
恒成立,即a>0……………11分
時,不合題意。綜上所述,實數(shù)
的取值范圍是
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com