題目列表(包括答案和解析)
已知函數(shù).
(Ⅰ)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)設(shè),若對任意
,
,不等式
恒成立,求實(shí)數(shù)
的取值范圍.
【解析】第一問利用的定義域是
由x>0及 得1<x<3;由x>0及
得0<x<1或x>3,
故函數(shù)的單調(diào)遞增區(qū)間是(1,3);單調(diào)遞減區(qū)間是
第二問中,若對任意不等式
恒成立,問題等價(jià)于
只需研究最值即可。
解: (I)的定義域是
......1分
............. 2分
由x>0及 得1<x<3;由x>0及
得0<x<1或x>3,
故函數(shù)的單調(diào)遞增區(qū)間是(1,3);單調(diào)遞減區(qū)間是
........4分
(II)若對任意不等式
恒成立,
問題等價(jià)于,
.........5分
由(I)可知,在上,x=1是函數(shù)極小值點(diǎn),這個(gè)極小值是唯一的極值點(diǎn),
故也是最小值點(diǎn),所以; ............6分
當(dāng)b<1時(shí),;
當(dāng)時(shí),
;
當(dāng)b>2時(shí),;
............8分
問題等價(jià)于 ........11分
解得b<1 或 或
即
,所以實(shí)數(shù)b的取值范圍是
已知函數(shù)
(1)若函數(shù)的圖象經(jīng)過P(3,4)點(diǎn),求a的值;
(2)比較大小,并寫出比較過程;
(3)若,求a的值.
【解析】本試題主要考查了指數(shù)函數(shù)的性質(zhì)的運(yùn)用。第一問中,因?yàn)楹瘮?shù)的圖象經(jīng)過P(3,4)點(diǎn),所以
,解得
,因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012061921574878204718/SYS201206192159225008161918_ST.files/image007.png">,所以
.
(2)問中,對底數(shù)a進(jìn)行分類討論,利用單調(diào)性求解得到。
(3)中,由知,
.,指對數(shù)互化得到
,,所以
,解得所以,
或
.
解:⑴∵函數(shù)的圖象經(jīng)過
∴
,即
. … 2分
又,所以
.
………… 4分
⑵當(dāng)時(shí),
;
當(dāng)時(shí),
. ……………… 6分
因?yàn)椋?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012061921574878204718/SYS201206192159225008161918_ST.files/image021.png">,
當(dāng)時(shí),
在
上為增函數(shù),∵
,∴
.
即.當(dāng)
時(shí),
在
上為減函數(shù),
∵,∴
.即
. …………………… 8分
⑶由知,
.所以,
(或
).
∴.∴
, … 10分
∴ 或
,所以,
或
.
已知函數(shù)在
處取得極值2.
⑴ 求函數(shù)的解析式;
⑵ 若函數(shù)在區(qū)間
上是單調(diào)函數(shù),求實(shí)數(shù)m的取值范圍;
【解析】第一問中利用導(dǎo)數(shù)
又f(x)在x=1處取得極值2,所以,
所以
第二問中,
因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070911311009329402/SYS201207091131543901356936_ST.files/image008.png">,又f(x)的定義域是R,所以由,得-1<x<1,所以f(x)在[-1,1]上單調(diào)遞增,在
上單調(diào)遞減,當(dāng)f(x)在區(qū)間(m,2m+1)上單調(diào)遞增,則有
,得
解:⑴ 求導(dǎo),又f(x)在x=1處取得極值2,所以
,即
,所以
…………6分
⑵ 因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070911311009329402/SYS201207091131543901356936_ST.files/image008.png">,又f(x)的定義域是R,所以由,得-1<x<1,所以f(x)在[-1,1]上單調(diào)遞增,在
上單調(diào)遞減,當(dāng)f(x)在區(qū)間(m,2m+1)上單調(diào)遞增,則有
,得
, …………9分
當(dāng)f(x)在區(qū)間(m,2m+1)上單調(diào)遞減,則有
得
…………12分
.綜上所述,當(dāng)時(shí),f(x)在(m,2m+1)上單調(diào)遞增,當(dāng)
時(shí),f(x)在(m,2m+1)上單調(diào)遞減;則實(shí)數(shù)m的取值范圍是
或
已知遞增等差數(shù)列滿足:
,且
成等比數(shù)列.
(1)求數(shù)列的通項(xiàng)公式
;
(2)若不等式對任意
恒成立,試猜想出實(shí)數(shù)
的最小值,并證明.
【解析】本試題主要考查了數(shù)列的通項(xiàng)公式的運(yùn)用以及數(shù)列求和的運(yùn)用。第一問中,利用設(shè)數(shù)列公差為
,
由題意可知,即
,解得d,得到通項(xiàng)公式,第二問中,不等式等價(jià)于
,利用當(dāng)
時(shí),
;當(dāng)
時(shí),
;而
,所以猜想,
的最小值為
然后加以證明即可。
解:(1)設(shè)數(shù)列公差為
,由題意可知
,即
,
解得或
(舍去). …………3分
所以,. …………6分
(2)不等式等價(jià)于,
當(dāng)時(shí),
;當(dāng)
時(shí),
;
而,所以猜想,
的最小值為
. …………8分
下證不等式對任意
恒成立.
方法一:數(shù)學(xué)歸納法.
當(dāng)時(shí),
,成立.
假設(shè)當(dāng)時(shí),不等式
成立,
當(dāng)時(shí),
,
…………10分
只要證 ,只要證
,
只要證 ,只要證
,
只要證 ,顯然成立.所以,對任意
,不等式
恒成立.…14分
方法二:單調(diào)性證明.
要證
只要證 ,
設(shè)數(shù)列的通項(xiàng)公式
, …………10分
, …………12分
所以對,都有
,可知數(shù)列
為單調(diào)遞減數(shù)列.
而,所以
恒成立,
故的最小值為
.
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com