題目列表(包括答案和解析)
已知點(diǎn)為圓
上的動(dòng)點(diǎn),且
不在
軸上,
軸,垂足為
,線段
中點(diǎn)
的軌跡為曲線
,過(guò)定點(diǎn)
任作一條與
軸不垂直的直線
,它與曲線
交于
、
兩點(diǎn)。
(I)求曲線的方程;
(II)試證明:在軸上存在定點(diǎn)
,使得
總能被
軸平分
【解析】第一問(wèn)中設(shè)為曲線
上的任意一點(diǎn),則點(diǎn)
在圓
上,
∴,曲線
的方程為
第二問(wèn)中,設(shè)點(diǎn)的坐標(biāo)為
,直線
的方程為
, ………………3分
代入曲線的方程
,可得
∵,∴
確定結(jié)論直線與曲線
總有兩個(gè)公共點(diǎn).
然后設(shè)點(diǎn),
的坐標(biāo)分別
,
,則
,
要使被
軸平分,只要
得到。
(1)設(shè)為曲線
上的任意一點(diǎn),則點(diǎn)
在圓
上,
∴,曲線
的方程為
. ………………2分
(2)設(shè)點(diǎn)的坐標(biāo)為
,直線
的方程為
, ………………3分
代入曲線的方程
,可得
,……5分
∵,∴
,
∴直線與曲線
總有兩個(gè)公共點(diǎn).(也可根據(jù)點(diǎn)M在橢圓
的內(nèi)部得到此結(jié)論)
………………6分
設(shè)點(diǎn),
的坐標(biāo)分別
,
,則
,
要使被
軸平分,只要
,
………………9分
即,
, ………………10分
也就是,
,
即,即只要
………………12分
當(dāng)時(shí),(*)對(duì)任意的s都成立,從而
總能被
軸平分.
所以在x軸上存在定點(diǎn),使得
總能被
軸平分
(本小題12分)設(shè)點(diǎn),點(diǎn)A在y軸上移動(dòng),點(diǎn)B在x軸正半軸(包括原點(diǎn))上移動(dòng),點(diǎn)M在AB連線上,且滿足
,
.
(Ⅰ)求動(dòng)點(diǎn)M的軌跡C的方程;
(Ⅱ)設(shè)軌跡C的焦點(diǎn)為F,準(zhǔn)線為l,自M引的垂線,垂足為N,設(shè)點(diǎn)使四邊形PFMN是菱形,試求實(shí)數(shù)a;
(Ⅲ)如果點(diǎn)A的坐標(biāo)為
,
,其中
>
,相應(yīng)線段AM的垂直平分線交x軸于
.設(shè)數(shù)列
的前n項(xiàng)和為
,證明:當(dāng)n≥2時(shí),
為定值.
(本題14分)已知橢圓的中心在坐標(biāo)原點(diǎn),焦點(diǎn)在
軸上,短軸長(zhǎng)為2,且兩個(gè)焦點(diǎn)和短軸的兩個(gè)端點(diǎn)恰為一個(gè)正方形的頂點(diǎn).過(guò)右焦點(diǎn)
與
軸不垂直的直線
交橢圓于
,
兩點(diǎn).
(Ⅰ)求橢圓的方程;
(Ⅱ)當(dāng)直線的斜率為1時(shí),求
的面積;
(Ⅲ)在線段上是否存在點(diǎn)
,使得以
為鄰邊的平行四邊形是菱形?
若存在,求出
的取值范圍;若不存在,請(qǐng)說(shuō)明理由.
在圓上任取一點(diǎn)
,過(guò)點(diǎn)
作
軸的垂線段
,
為垂足,當(dāng)點(diǎn)
在圓上運(yùn)動(dòng)時(shí),線段
的中點(diǎn)
的軌跡為曲線
(Ⅰ)求曲線的方程;
(Ⅱ)過(guò)點(diǎn)的直線
與曲線
相交于不同的兩點(diǎn)
, 點(diǎn)
在線段
的垂直平分線上,且
,求
的值
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com