題目列表(包括答案和解析)
已知動圓與圓
相切,且與圓
相內(nèi)切,記圓心
的軌跡為曲線
;設(shè)
為曲線
上的一個不在
軸上的動點,
為坐標(biāo)原點,過點
作
的平行線交曲線
于
兩個不同的點.
(1)求曲線的方程;
(2)試探究和
的比值能否為一個常數(shù)?若能,求出這個常數(shù),若不能,請說明理由;
(3)記的面積為
,求
的最大值.
已知動圓與圓
相切,且與圓
相內(nèi)切,記圓心
的軌跡為曲線
;設(shè)
為曲線
上的一個不在
軸上的動點,
為坐標(biāo)原點,過點
作
的平行線交曲線
于
兩個不同的點.
(1)求曲線的方程;
(2)試探究和
的比值能否為一個常數(shù)?若能,求出這個常數(shù),若不能,請說明理由;
(3)記的面積為
,
的面積為
,令
,求
的最大值.
已知圓直線
與圓
相切,且交橢圓
于
兩點,
是橢圓的半焦距,
,
(Ⅰ)求的值;
(Ⅱ)O為坐標(biāo)原點,若求橢圓
的方程;
(Ⅲ) 在(Ⅱ)的條件下,設(shè)橢圓的左右頂點分別為A,B,動點
,直線AS,BS與直線
分別交于M,N兩點,求線段MN的長度的最小值.
一動圓與圓外切,與圓
內(nèi)切.
(1)求動圓圓心的軌跡
的方程;
(2)設(shè)過圓心的直線
與軌跡
相交于
、
兩點,請問
(
為圓
的圓心)的內(nèi)切圓
的面積是否存在最大值?若存在,求出這個最大值及直線
的方程,若不存在,請說明理由.
一、填空題:
1、
2、
3、對任意
使
4、2 5、
6、
7、
8、8
9、
10、40
11、
12、4
13、解:(1)解:,
由
,有
,
解得
。
……7分
(2)解法一:
……11分
。 ……15分
解法二:由(1),
,得
∴
∴
……10分
于是
,
……12分
代入得
。
……15分
14、(1)解:①若直線的斜率不存在,即直線是
,符合題意。 ……2分
②若直線
斜率存在,設(shè)直線
為
,即
。
由題意知,圓心
以已知直線
的距離等于半徑2,即:
,
解之得
……5分
所求直線方程是
,
……6分
(2)解法一:直線與圓相交,斜率必定存在,且不為0,可設(shè)直線方程為
由
得
……8分
又直線
與
垂直,由
得
……11分
∴
……13分
為定值。
故是定值,且為6。
……15分
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com