8天堂资源在线,国产成人久久av免费高潮,国产精品亚洲综合色区韩国,国产欧美va天堂在线观看视频,xx色综合

(II)求使≥2的的取值范圍 查看更多

 

題目列表(包括答案和解析)

設f(x)是定義在區(qū)間(1,+∞)上的函數(shù),其導函數(shù)為f(x)。如果存在實數(shù)a和函數(shù)h(x),其中h(x)對任意的x∈(1,+∞)都有h(x)>0,使得f′(x)=h(x)(x2-ax+1),則稱函數(shù)f(x)具有性質(zhì)P(a)。
(I)設函數(shù),其中b為實數(shù)。
(i)求證:函數(shù)f(x)具有性質(zhì)P(b);
(ii)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)已知函數(shù)g(x)具有性質(zhì)P(2)。給定x1,x2∈(1,+∞),x1<x2,設m為實數(shù),α=mx1+(1-m)x2,β=(1-m)x1+mx2,且α>1,β>1,若|g(α)-g(β)|< |g(x1)-g(x2)|,求m的取值范圍。

查看答案和解析>>

函數(shù)f(x)=(2-a)(x-1)-2lnx,g(x)=xe1-x(a∈R,e為自然數(shù)的底數(shù))
(Ⅰ)討論函數(shù)f(x)的單調(diào)性;
(II) 若對任意給定的x0∈(0,e],在(0,e]上總存在兩個不同的xi(i=1,2),使得f(xi)=g(x0)成立,求a的取值范圍.

查看答案和解析>>

已知函數(shù).

(I)求的最小正周期及最大值;

(II)求使≥2的的取值范圍

查看答案和解析>>

已知f(x)=x2+ax+a(a≤2,x∈R),g(x)=ex,φ(x)=數(shù)學公式
(I)當a=1時,求φ(x)的單調(diào)區(qū)間;
(II)求φ(x)在x∈[1,+∞)是遞減的,求實數(shù)a的取值范圍;
(III)是否存在實數(shù)a,使φ(x)的極大值為3?若存在,求a的值;若不存在,請說明理由.

查看答案和解析>>

已知f(x)=ex-ax(e=2.718…)
(I)討論函數(shù)f(x)的單調(diào)區(qū)間;
(II)若函數(shù)f(x)在區(qū)間(0,2)上有兩個零點,求a的取值范圍;
(Ⅲ) A(xl,yl),B(x2,y2)是f(x)的圖象上任意兩點,且x1<x2,若總存在xo∈R,使得f′數(shù)學公式,求證:xo>xl

查看答案和解析>>

 

一、選擇題:

 

1

2

3

4

5

6

7

8

9

10

11

12

 

B

A

D

B

D

B

C

C

A

B

D

A

二、填空題:

13.1       14.       15.5       16.

三、解答題:

17.解:(I)設“甲射擊5次,有兩次未擊中目標”為事件A,則

      

答:甲射擊5次,有兩次未擊中目標的概率為            …………5分

   (Ⅱ)設“兩人各射擊4次,甲恰好擊中目標2次,且乙恰好擊中目標3次”為事件B,則

    答:兩人各射擊4次,甲恰好擊中目標2次,且乙恰好擊中目標3次的概率為 

    ………………10分

18.解:(I)

       ……2分

      

       ………………………………………4分

      

       ………………………………………6分

   (II)由

       得

      

      

      

       x的取值范圍是…………12分

19.解:(Ⅰ)因為四棱錐P―ABCD的底面是正方形,PA⊥底面ABCD,

則CD⊥側(cè)面PAD 

……………5分

   (Ⅱ)建立如圖所示的空間直角坐標系又PA=AD=2,

    <cite id="yskf1"></cite>

    <cite id="yskf1"><track id="yskf1"></track></cite>

  1. 則有

    同理可得

    即得…………………………8分

    而平面PAB的法向量可為

    故所求平面AMN與PAB所成銳二面角的大小為…………12分

    20.解:(Ⅰ)∵為奇函數(shù),

    ………………………………………2分

    的最小值為

    又直線的斜率為

    因此,

    ,,  ………………………………………5分

    (Ⅱ)由(Ⅰ)知  

       ∴,列表如下:

    極大

    極小

       所以函數(shù)的單調(diào)增區(qū)間是…………8分

    ,

    上的最大值是,最小值是………12分

    21.解:(Ⅰ)設d、q分別為數(shù)列、數(shù)列的公差與公比.

    由題可知,分別加上1,1,3后得2,2+d,4+2d

    是等比數(shù)列的前三項,

    ……………4分

    由此可得

    …………………………6分

       (Ⅱ)

    ,

    ,

    ①―②,得

    ………………9分

    在N*是單調(diào)遞增的,

    ∴滿足條件恒成立的最小整數(shù)值為……12分

    22.解:(Ⅰ)∵雙曲線方程為

    ∴雙曲線方程為 ,又曲線C過點Q(2,),

    ∴雙曲線方程為    ………………5分

    (Ⅱ)∵,∴M、B2、N三點共線 

    ,   ∴

    (1)當直線垂直x軸時,不合題意 

    (2)當直線不垂直x軸時,由B1(0,3),B2(0,-3),

    可設直線的方程為,①

    ∴直線的方程為   ②

    由①,②知  代入雙曲線方程得

    ,得,

    解得 , ∴

    故直線的方程為      ………………12分