題目列表(包括答案和解析)
(A)2 (B)1 (C)-2 (D)-3
已知函數(shù)的定義域為
,部分對應(yīng)值如下表。
的導(dǎo)函數(shù)
的圖像如圖所示。
|
|
0 |
|
|
|
|
|
|
|
|
|
下列關(guān)于函數(shù)的命題:
①函數(shù)在
上是減函數(shù);②如果當
時,
最大值是
,那么
的最大值為
;③函數(shù)
有
個零點,則
;④已知
是
的一個單調(diào)遞減區(qū)間,則
的最大值為
。
其中真命題的個數(shù)是( )
A、4個 B、3個 C、2個 D、1個
已知函數(shù)的定義域為
,部分對應(yīng)值如下表。
的導(dǎo)函數(shù)
的圖像如圖所示。
![]() | ![]() | 0 | ![]() | ![]() | ![]() |
![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
x+1 |
2 |
x |
2 |
A、{0,1} |
B、[0,1] |
C、{0,1,2} |
D、[0,2] |
A、6 | ||
B、8 | ||
C、
| ||
D、
|
一、填空題(每題5分)
1) 2)
3)0 4)
5)
6) ②④ 7)
8)
9)
10)
11)
二、選擇題 (每題5分)
12、A 13、B 14、B 15、D
三、解答題
16、
(1)因為,所以∠BCA(或其補角)即為異面直線
與
所成角
-------(3分)
∠ABC=90°, AB=BC=1,所以,
-------(2分)
即異面直線與
所成角大小為
。
-------(1分)
(2)直三棱柱ABC-A1B,所以
即為直線A
。 -------(2分)
中,AB=BC=1得到
,
中,得到
, -------(2分)
所以 -------(2分)
17、(10=
-------(1分)
= -------(1分)
= -------(1分)
周期; -------(1分)
,解得單調(diào)遞增區(qū)間為
-------(2分)
(2),所以
,
,
所以的值域為
,
-------(4分)
而,所以
,即
-------(4分)
18、,顧客得到的優(yōu)惠率是
。 -------(5分)
(2)、設(shè)商品的標價為x元,則500≤x≤800 ------(2分)
消費金額: 400≤0.8x≤640
由題意可得:
(1)≥
無解
------(3分)
或(2) ≥
得:625≤x≤750 ------(3分)
因此,當顧客購買標價在元內(nèi)的商品時,可得到不小于
的優(yōu)惠率。------(1分)
19、(1)與
軸的交點
為
, ------(1分)
;所以
,即
,-
----(1分)
因為在
上,所以
,即
----(2分)
(2)若
(
),
即若
(
) ----(1分)
(A)當時,
----(1分)
==
,而
,所以
----(1分)
(B)當時,
----(1分)
= =
,
----(1分)
而,所以
----(1分)
因此(
)
----(1分)
(3)假設(shè)存在使得
成立。
(A)若為奇數(shù),則
為偶數(shù)。所以
,
,而
,所以
,方程無解,此時不存在。 ----(2分)
(B) 若為偶數(shù),則
為奇數(shù)。所以
,
,而
,所以
,解得
----(2分)
由(A)(B)得存在使得
成立。
----(1分)
20、(1)(A):點P與點F(2,0)的距離比它到直線+4=0的距離小2,所以點P與點F(2,0)的距離與它到直線
+2=0的距離相等。 ----(1分)
由拋物線定義得:點在以
為焦點直線
+2=0為準線的拋物線上, ----(1分)
拋物線方程為。 ----(2分)
解法(B):設(shè)動點,則
。當
時,
,化簡得:
,顯然
,而
,此時曲線不存在。當
時,
,化簡得:
。
(2),
,
,
----(1分)
,
,即
,
,
----(2分)
直線為,所以
----(1分)
----(1分)
由(a)(b)得:直線恒過定點。
----(1分)
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com