8天堂资源在线,国产成人久久av免费高潮,国产精品亚洲综合色区韩国,国产欧美va天堂在线观看视频,xx色综合

(Ⅲ)記. 查看更多

 

題目列表(包括答案和解析)

(Ⅰ)已知函數(shù)f(x)=
x
x+1
.?dāng)?shù)列{an}滿足:an>0,a1=1,且
an+1
=f(
an
)
,記數(shù)列{bn}的前n項(xiàng)和為Sn,且Sn=
2
2
[
1
an
+(
2
+1)n]
.求數(shù)列{bn}的通項(xiàng)公式;并判斷b4+b6是否仍為數(shù)列{bn}中的項(xiàng)?若是,請證明;否則,說明理由.
(Ⅱ)設(shè){cn}為首項(xiàng)是c1,公差d≠0的等差數(shù)列,求證:“數(shù)列{cn}中任意不同兩項(xiàng)之和仍為數(shù)列{cn}中的項(xiàng)”的充要條件是“存在整數(shù)m≥-1,使c1=md”.

查看答案和解析>>

(Ⅰ)已知函數(shù)f(x)=x3-x,其圖象記為曲線C.
(i)求函數(shù)f(x)的單調(diào)區(qū)間;
(ii)證明:若對于任意非零實(shí)數(shù)x1,曲線C與其在點(diǎn)P1(x1,f(x1))處的切線交于另一點(diǎn)P2(x2,f(x2)),曲線C與其在點(diǎn)P2(x2,f(x2))處的切線交于另一點(diǎn)P3(x3,f(x3)),線段P1P2,P2P3與曲線C所圍成封閉圖形的面積記為S1,S2.則
S1S2
為定值;
(Ⅱ)對于一般的三次函數(shù)g(x)=ax3+bx2+cx+d(a≠0),請給出類似于(Ⅰ)(ii)的正確命題,并予以證明.

查看答案和解析>>

()(02年新課程高考天津卷)已知兩點(diǎn)M(-1,0),N(1,0),且點(diǎn)P使·,·,·成公差小于零的等差數(shù)列(1)點(diǎn)P的軌跡是什么曲線?(2)若點(diǎn)P坐標(biāo)為(),記的夾角,求;

查看答案和解析>>

()定義在R上的函數(shù)既是奇函數(shù),又是周期函數(shù),是它的一個正周期.若將方程在閉區(qū)間上的根的個數(shù)記為,則可能為

  (A)0                                     (B)1                                          (C)3                                (D)5

查看答案和解析>>

()如圖,拋物線y=-x2+1與x軸的正半軸交于點(diǎn)A,將線段OAn等分點(diǎn)從左至右依次記為P1,P2,…,Pn-1,過這些分點(diǎn)分別作x軸的垂線,與拋物線的交點(diǎn)依次為Q1Q2,…,Qn-1,從而得到n-1個直角三角形△Q1OP1, △Q2P1P2,…, △Qn-1Pn-1Pn-1,當(dāng)n→∞時,這些三角形的面積之和的極限為                  .

查看答案和解析>>

一、1 B     2 D    3 A   4 D     5 D     6 B   

7 A     8  A   9 C   10 D    11 B    12 B

   二、13、3      14、-160    15、     16、  

   三、17、解: (1)     …… 3分

     的最小正周期為                        ………………… 5分

(2) ,          …………………  7分     

                        ………………… 10分

                                ………………… 11分

 當(dāng)時,函數(shù)的最大值為1,最小值 ………… 12分

 18、(I)解:設(shè)這箱產(chǎn)品被用戶拒絕接收事件為A,被接收為,則由對立事件概率公式

   得:

即這箱產(chǎn)品被用戶拒絕接收的概率為           …………   6分

(II)                

                                   ………… 10分

1

2

3

P

                                                          …………11分

∴ E=                                  …………12分

19、解法一:

(Ⅰ)連結(jié)B1CBCO,則OBC的中點(diǎn),連結(jié)DO。

∵在△AC中,O、D均為中點(diǎn),

ADO   …………………………2分

A平面BD,DO平面BD,

A∥平面BD!4分

(Ⅱ)設(shè)正三棱柱底面邊長為2,則DC = 1。

    ∵∠DC = 60°,∴C= 。

DEBCE。

∵平面BC⊥平面ABC,

DE⊥平面BC

EFBF,連結(jié)DF,則 DF⊥B

∴∠DFE是二面角D-B-C的平面角……………………………………8分

RtDEC中,DE=

RtBFE中,EF = BE?sin

∴在RtDEF中,tan∠DFE =

∴二面角DBC的大小為arctan………………12分

解法二:以AC的中D為原點(diǎn)建立坐標(biāo)系,如圖,

設(shè)| AD | = 1∵∠DC =60°∴| C| = 。

     則A(1,0,0),B(0,,0),C(-1,0,0),

(1,0),

(Ⅰ)連結(jié)CBOC的中點(diǎn),連結(jié)DO,則                  O.       =

A平面BD,

A∥平面BD.……………………………………………………………4分

(Ⅱ)=(-1,0,),

       設(shè)平面BD的法向量為n = ( x , y , z ),則

       即  則有= 0令z = 1

n = (,0,1)…………………………………………………………8分

       設(shè)平面BC的法向量為m = ( x′ ,y′,z′)

  • <style id="pxk3s"></style>
      1.  

        <sub id="pxk3s"></sub>
      2. <cite id="pxk3s"></cite><center id="pxk3s"></center>

        • <cite id="pxk3s"></cite>

                令y = -1,解得m = (,-1,0)

                二面角DBC的余弦值為cos<n , m>=

          ∴二面角DBC的大小為arc cos          …………12分

          20、解: 對函數(shù)求導(dǎo)得: ……………2分

          (Ⅰ)當(dāng)時,                   

          解得

            解得

          所以, 單調(diào)增區(qū)間為,,

          單調(diào)減區(qū)間為(-1,1)                                    ……………5分

          (Ⅱ) 令,即,解得     ………… 6分

          時,列表得:

           

          x

          1

          +

          0

          0

          +

          極大值

          極小值

          ……………8分

          對于時,因?yàn)?sub>,所以,

          >0                                                    …………   10 分

          對于時,由表可知函數(shù)在時取得最小值

          所以,當(dāng)時,                              

          由題意,不等式恒成立,

          所以得,解得                          ……………12分

          21、解: (I)依題意知,點(diǎn)的軌跡是以點(diǎn)為焦點(diǎn)、直線為其相應(yīng)準(zhǔn)線,

          離心率為的橢圓

          設(shè)橢圓的長軸長為2a,短軸長為2b,焦距為2c,

          ,,∴點(diǎn)在x軸上,且,則3,

          解之得:,     

          ∴坐標(biāo)原點(diǎn)為橢圓的對稱中心 

          ∴動點(diǎn)M的軌跡方程為:                 …………    4分

          (II)設(shè),設(shè)直線的方程為(-2〈n〈2),代入

                               ………… 5分

          , 

               …………  6分

          ,K(2,0),,

          ,

           

          解得: (舍)      ∴ 直線EF在X軸上的截距為    …………8分

          (Ⅲ)設(shè),由知, 

          直線的斜率為                …………    10分

          當(dāng)時,;

          當(dāng)時,,

          時取“=”)或時取“=”),

                                          

          綜上所述                         …………  12分  

          22、(I)解:方程的兩個根為,

          當(dāng)時,,所以;

          當(dāng)時,,所以;

          當(dāng)時,,,所以時;

          當(dāng)時,,,所以.    …………  4分

          (II)解:

          .                        …………  8分

          (III)證明:,

          所以,

          .                       …………  9分

          當(dāng)時,

          ,

                                                   …………  11分

          同時,

          .                                    …………  13分

          綜上,當(dāng)時,.                     …………  14分