8天堂资源在线,国产成人久久av免费高潮,国产精品亚洲综合色区韩国,国产欧美va天堂在线观看视频,xx色综合

(II)設(shè)點(diǎn)K為點(diǎn)的軌跡與x軸正半軸的交點(diǎn),直線交點(diǎn)的軌跡于兩點(diǎn)(與點(diǎn)K均不重合),且滿足 求直線EF在X軸上的截距, 查看更多

 

題目列表(包括答案和解析)

    如圖,已知三角形PAQ頂點(diǎn)P-3,0),點(diǎn)Ay軸上,點(diǎn)Qx軸正半軸上,。

(I)          當(dāng)點(diǎn)Ay軸上移動時(shí),求動點(diǎn)M的軌跡E的方程;

 

II)設(shè)直線與軌跡E交于B、C兩點(diǎn),點(diǎn)D(1,0),若∠BDC為鈍角,求k的取值范圍。

 

查看答案和解析>>

    如圖,已知三角形PAQ頂點(diǎn)P-3,0),點(diǎn)Ay軸上,點(diǎn)Qx軸正半軸上,。

(I)          當(dāng)點(diǎn)Ay軸上移動時(shí),求動點(diǎn)M的軌跡E的方程;

 

II)設(shè)直線與軌跡E交于B、C兩點(diǎn),點(diǎn)D(1,0),若∠BDC為鈍角,求k的取值范圍。

 

查看答案和解析>>

精英家教網(wǎng)如圖,在直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),直線AB⊥x軸與點(diǎn)C,|
OC
|=4
,
CD
=3
DO
,動點(diǎn)M到直線AB的距離是它到點(diǎn)D的距離的2倍.
(I)求點(diǎn)M的軌跡方程
(II)設(shè)點(diǎn)K為點(diǎn)M的軌跡與x軸正半軸的交點(diǎn),直線l交點(diǎn)M的軌跡于E,F(xiàn)兩點(diǎn)(E,F(xiàn)與點(diǎn)K不重合),且滿足
KE
KF
.動點(diǎn)P滿足2
OP
=
OE
+
OF
,求直線KP的斜率的取值范圍.

查看答案和解析>>

如圖,在直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),直線AB⊥x軸與點(diǎn)C,,,動點(diǎn)M到直線AB的距離是它到點(diǎn)D的距離的2倍.
(I)求點(diǎn)M的軌跡方程
(II)設(shè)點(diǎn)K為點(diǎn)M的軌跡與x軸正半軸的交點(diǎn),直線l交點(diǎn)M的軌跡于E,F(xiàn)兩點(diǎn)(E,F(xiàn)與點(diǎn)K不重合),且滿足.動點(diǎn)P滿足,求直線KP的斜率的取值范圍.

查看答案和解析>>

如圖,在直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),直線AB⊥x軸與點(diǎn)C,,動點(diǎn)M到直線AB的距離是它到點(diǎn)D的距離的2倍.
(I)求點(diǎn)M的軌跡方程
(II)設(shè)點(diǎn)K為點(diǎn)M的軌跡與x軸正半軸的交點(diǎn),直線l交點(diǎn)M的軌跡于E,F(xiàn)兩點(diǎn)(E,F(xiàn)與點(diǎn)K不重合),且滿足.動點(diǎn)P滿足,求直線KP的斜率的取值范圍.

查看答案和解析>>

一、1 B     2 D    3 A   4 D     5 D     6 B   

7 A     8  A   9 C   10 D    11 B    12 B

   二、13、3      14、-160    15、     16、  

   三、17、解: (1)     …… 3分

     的最小正周期為                        ………………… 5分

(2) ,          …………………  7分     

                        ………………… 10分

                                ………………… 11分

 當(dāng)時(shí),函數(shù)的最大值為1,最小值 ………… 12分

 18、(I)解:設(shè)這箱產(chǎn)品被用戶拒絕接收事件為A,被接收為,則由對立事件概率公式

   得:

即這箱產(chǎn)品被用戶拒絕接收的概率為           …………   6分

(II)                

                                   ………… 10分

1

2

3

P

                                                          …………11分

∴ E=                                  …………12分

19、解法一:

(Ⅰ)連結(jié)B1CBCO,則OBC的中點(diǎn),連結(jié)DO

∵在△AC中,O、D均為中點(diǎn),

ADO   …………………………2分

A平面BD,DO平面BD,

A∥平面BD!4分

(Ⅱ)設(shè)正三棱柱底面邊長為2,則DC = 1。

    ∵∠DC = 60°,∴C= 。

DEBCE。

∵平面BC⊥平面ABC,

DE⊥平面BC

EFBF,連結(jié)DF,則 DF⊥B

∴∠DFE是二面角D-B-C的平面角……………………………………8分

RtDEC中,DE=

RtBFE中,EF = BE?sin

∴在RtDEF中,tan∠DFE =

∴二面角DBC的大小為arctan………………12分

解法二:以AC的中D為原點(diǎn)建立坐標(biāo)系,如圖,

設(shè)| AD | = 1∵∠DC =60°∴| C| =

     則A(1,0,0),B(0,,0),C(-1,0,0),

(1,0), ,

(Ⅰ)連結(jié)CBOC的中點(diǎn),連結(jié)DO,則                  O.       =

A平面BD,

A∥平面BD.……………………………………………………………4分

(Ⅱ)=(-1,0,),

       設(shè)平面BD的法向量為n = ( x , y , z ),則

       即  則有= 0令z = 1

n = (,0,1)…………………………………………………………8分

       設(shè)平面BC的法向量為m = ( x′ ,y′,z′)

 

      1. <tfoot id="a5qyg"></tfoot>

        <kbd id="a5qyg"></kbd>
        <style id="a5qyg"></style>

              令y = -1,解得m = (,-1,0)

              二面角DBC的余弦值為cos<n , m>=

        ∴二面角DBC的大小為arc cos          …………12分

        20、解: 對函數(shù)求導(dǎo)得: ……………2分

        (Ⅰ)當(dāng)時(shí),                   

        解得

          解得

        所以, 單調(diào)增區(qū)間為,,

        單調(diào)減區(qū)間為(-1,1)                                    ……………5分

        (Ⅱ) 令,即,解得     ………… 6分

        時(shí),列表得:

         

        x

        1

        +

        0

        0

        +

        極大值

        極小值

        ……………8分

        對于時(shí),因?yàn)?sub>,所以,

        >0                                                    …………   10 分

        對于時(shí),由表可知函數(shù)在時(shí)取得最小值

        所以,當(dāng)時(shí),                              

        由題意,不等式恒成立,

        所以得,解得                          ……………12分

        21、解: (I)依題意知,點(diǎn)的軌跡是以點(diǎn)為焦點(diǎn)、直線為其相應(yīng)準(zhǔn)線,

        離心率為的橢圓

        設(shè)橢圓的長軸長為2a,短軸長為2b,焦距為2c,

        ,,∴點(diǎn)在x軸上,且,則3,

        解之得:,     

        ∴坐標(biāo)原點(diǎn)為橢圓的對稱中心 

        ∴動點(diǎn)M的軌跡方程為:                 …………    4分

        (II)設(shè),設(shè)直線的方程為(-2〈n〈2),代入

                             ………… 5分

        , 

             …………  6分

        ,K(2,0),,

        ,

         

        解得: (舍)      ∴ 直線EF在X軸上的截距為    …………8分

        (Ⅲ)設(shè),由知, 

        直線的斜率為                …………    10分

        當(dāng)時(shí),;

        當(dāng)時(shí),,

        時(shí)取“=”)或時(shí)取“=”),

                                        

        綜上所述                         …………  12分  

        22、(I)解:方程的兩個(gè)根為,,

        當(dāng)時(shí),,所以;

        當(dāng)時(shí),,,所以;

        當(dāng)時(shí),,,所以時(shí);

        當(dāng)時(shí),,,所以.    …………  4分

        (II)解:

        .                        …………  8分

        (III)證明:,

        所以

        .                       …………  9分

        當(dāng)時(shí),

        ,

                                                 …………  11分

        同時(shí),

        .                                    …………  13分

        綜上,當(dāng)時(shí),.                     …………  14分