8天堂资源在线,国产成人久久av免费高潮,国产精品亚洲综合色区韩国,国产欧美va天堂在线观看视频,xx色综合

19 查看更多

 

題目列表(包括答案和解析)

 (19)(本小題滿分12分)

為防止風沙危害,某地決定建設(shè)防護綠化帶,種植楊樹、沙柳等植物。某人一次種植了n株沙柳,各株沙柳成活與否是相互獨立的,成活率為p,設(shè)為成活沙柳的株數(shù),數(shù)學期望,標準差。

(Ⅰ)求n,p的值并寫出的分布列;

(Ⅱ)若有3株或3株以上的沙柳未成活,則需要補種,求需要補種沙柳的概率

查看答案和解析>>

 19(本小題滿分12分)

P是以為焦點的雙曲線C:(a>0,b>0)上的一點,已知=0,

(1)試求雙曲線的離心率;

(2)過點P作直線分別與雙曲線兩漸近線相交于P1、P2兩點,當,= 0,求雙曲線的方程.

查看答案和解析>>

 (19) (本小題滿分12分)某廠家根據(jù)以往的經(jīng)驗得到有關(guān)生產(chǎn)銷售規(guī)律如下:每生產(chǎn)(百臺),其總成本為(萬元),其中固定成本2萬元,每生產(chǎn)1百臺需生產(chǎn)成本1萬元(總成本固定成本生產(chǎn)成本);銷售收入(萬元)滿足:(Ⅰ)要使工廠有盈利,求的取值范圍;

(Ⅱ)求生產(chǎn)多少臺時,盈利最多?

查看答案和解析>>

(本小題滿分12分)

某初級中學有三個年級,各年級男、女生人數(shù)如下表:

初一年級

初二年級

初三年級

女生

370

z

200

男生

380

370

300

已知在全校學生中隨機抽取1名,抽到初二年級女生的概率是0.19.

   (1)求z的值;

   (2)用分層抽樣的方法在初三年級中抽取一個容量為5的樣本,將該樣本看成一個總體,從中任選2名學生,求至少有1名女生的概率;

   (3)用隨機抽樣的方法從初二年級女生中選出8人,測量它們的左眼視力,結(jié)果如下:1.2, 1.5, 1.2, 1.5, 1.5, 1.3, 1.0, 1.2.把這8人的左眼視力看作一個總體,從中任取一個數(shù),求該數(shù)與樣本平均數(shù)之差的絕對值不超過0.1的概率.

查看答案和解析>>

(本小題滿分12分)

某初級中學共有學生2000名,各年級男、女生人數(shù)如下表:

初一年級

初二年級

初三年級

女生

373

x

Y

男生

377

370

z

已知在全校學生中隨機抽取1名,抽到初二年級女生的概率是0.19。   (I)求x的值;  (II)現(xiàn)用分層抽樣的方法在全校抽取48名學生,問應(yīng)在初三年級抽取多少名? (III)已知,求初三年級中女生比男生多的概率。

查看答案和解析>>

一、1 B     2 D    3 A   4 D     5 C     6 B   

7 A     8  A   9 C   10 D    11 C    12 B

二、13、3     14、      15、-160       16、   

三、17、解: (1)      ……… 3分

     的最小正周期為                     ………………… 5分

(2)  ,    …………………   7分     

               ………………… 10分  

               …………………  11分

 時,函數(shù)的最大值為1,最小值  ……… 12分

18.解:(1)P1=;                          ……… 6分

(2)方法一:P2=

方法二:P2=

方法三:P2=1-            ……… 12分

19、解法一:

(Ⅰ)連結(jié)CBCO,則OB C的中點,連結(jié)DO。

∵在△AC中,O、D均為中點,

ADO…………………………2分

A平面BD,DO平面BD,

A∥平面BD。…………………4分

(Ⅱ)設(shè)正三棱柱底面邊長為2,則DC = 1。

    ∵∠DC = 60°,∴C= 。

DEBCE。

∵平面BC⊥平面ABC,

DE⊥平面BC

EFBF,連結(jié)DF,則 DF⊥B

∴∠DFE是二面角D-B-C的平面角………………8分

RtDEC中,DE=

RtBFE中,EF = BE?sin

∴在RtDEF中,tan∠DFE =

∴二面角DBC的大小為arctan………………12分

解法二:以AC的中D為原點建立坐標系,如圖,

設(shè)| AD | = 1∵∠DC =60°∴| C| = 。

     則A(1,0,0),B(0,,0),C(-1,0,0),

(1,0), ,

(Ⅰ)連結(jié)CBOC的中點,連結(jié)DO,則     

     O.       =

A平面BD

A∥平面BD.………………………………………………4分

(Ⅱ)=(-1,0,),

       設(shè)平面BD的法向量為n = ( x , y , z ),則

       即  則有= 0令z = 1

n = (,0,1)          …………………………………8分

       設(shè)平面BC的法向量為m = ( x′ ,y′,z′)

           

                令y = -1,解得m = (,-1,0)

                二面角DBC的余弦值為cos<n , m>=

          ∴二面角DBC的大小為arc cos               …………12分

          20、解: 解:

               (1)f(x)=x3+ax2+bx+c,    f′(x)=3x2+2ax+b,

                   由f′(-)=a+b=0,   f′(1)=3+2a+b=0,得

                   a=-,b=-2,…………  3分

          f′(x)=3x2-x-2=(3x+2)(x-1),函數(shù)f(x)的單調(diào)區(qū)間如下表:

          (-∞,-

          (-,1)

          1

          (1,+∞)

          f′(x)

          +

          0

          0

          +

          f(x)

           

          極大值

          極小值

          所以函數(shù)f(x)的遞增區(qū)間為(-∞,-)與(1,+∞);

          遞減區(qū)間為(-,1).             …………  6分

          (2)f(x)=x3-x2-2x+c  x∈[-1,2],當x=-時,f(x)=+c為極大值,

          而f(2)=2+c,則f(2)=2+c為最大值.      …………  8分

          要使f(x)<c2(x∈[-1,2])恒成立,只須c2>f(2)=2+c,

          解得c<-1或c>2.               …………  12分

          21、(I)解:方程的兩個根為,,

          時,,所以;

          時,,所以;

          時,,所以時;

          時,,所以.      …………  4分

          (II)解:

          .                          …………  8分

          (Ⅲ)=                       …………  12分

          22、解: (I)依題意知,點的軌跡是以點為焦點、直線為其相應(yīng)準線,

          離心率為的橢圓

          設(shè)橢圓的長軸長為2a,短軸長為2b,焦距為2c,

          ,,∴點在x軸上,且,且3

          解之得:,     ∴坐標原點為橢圓的對稱中心 

          ∴動點M的軌跡方程為:        …………  4分

          (II)設(shè),設(shè)直線的方程為,代入

                             ………… 5分

          , 

              ………… 6分

          ,,

          ,

           

          解得: (舍)   ∴ 直線EF在X軸上的截距為    …………8分

          (Ⅲ)設(shè),由知, 

          直線的斜率為    ………… 10分

          時,;

          時,,

          時取“=”)或時取“=”),

                       ………… 12分            

          綜上所述                  ………… 14分