題目列表(包括答案和解析)
(本小題滿分12分)已知函數(shù)
(I)若函數(shù)在區(qū)間
上存在極值,求實(shí)數(shù)a的取值范圍;
(II)當(dāng)時(shí),不等式
恒成立,求實(shí)數(shù)k的取值范圍.
(Ⅲ)求證:解:(1),其定義域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012052512313679685506/SYS201205251234077812428021_ST.files/image007.png">,則
令
,
則,
當(dāng)時(shí),
;當(dāng)
時(shí),
在(0,1)上單調(diào)遞增,在
上單調(diào)遞減,
即當(dāng)時(shí),函數(shù)
取得極大值. (3分)
函數(shù)
在區(qū)間
上存在極值,
,解得
(4分)
(2)不等式,即
令
(6分)
令,則
,
,即
在
上單調(diào)遞增, (7分)
,從而
,故
在
上單調(diào)遞增, (7分)
(8分)
(3)由(2)知,當(dāng)時(shí),
恒成立,即
,
令,則
, (9分)
(10分)
以上各式相加得,
即,
即
(12分)
。
設(shè)f (x)=sin 2x+(sin x-cos x)(sin x+cos x),其中x∈R.
(Ⅰ) 該函數(shù)的圖象可由
的圖象經(jīng)過怎樣的平移和伸縮變換得到?
(Ⅱ)若f (θ)=,其中
,求cos(θ+
)的值;
【解析】第一問中,
即變換分為三步,①把函數(shù)
的圖象向右平移
,得到函數(shù)
的圖象;
②令所得的圖象上各點(diǎn)的縱坐標(biāo)不變,把橫坐標(biāo)縮短到原來的倍,得到函數(shù)
的圖象;
③令所得的圖象上各點(diǎn)的橫坐標(biāo)不變,把縱坐標(biāo)伸長到原來的2倍,得到函數(shù)的圖象;
第二問中因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912192026514838/SYS201207091220027495699378_ST.files/image008.png">,所以,則
,又
,
,從而
進(jìn)而得到結(jié)論。
(Ⅰ) 解:
即。…………………………………3分
變換的步驟是:
①把函數(shù)的圖象向右平移
,得到函數(shù)
的圖象;
②令所得的圖象上各點(diǎn)的縱坐標(biāo)不變,把橫坐標(biāo)縮短到原來的倍,得到函數(shù)
的圖象;
③令所得的圖象上各點(diǎn)的橫坐標(biāo)不變,把縱坐標(biāo)伸長到原來的2倍,得到函數(shù)的圖象;…………………………………3分
(Ⅱ) 解:因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912192026514838/SYS201207091220027495699378_ST.files/image008.png">,所以,則
,又
,
,從而
……2分
(1)當(dāng)時(shí),
;…………2分
(2)當(dāng)時(shí);
線段s與線段s1的關(guān)系 | m、r的取值或表達(dá)式 |
s所在直線平行于s1所在直線 | |
s所在直線平分線段s1 |
已知橢圓的對稱軸為坐標(biāo)軸,焦點(diǎn)是(0,
),(0,
),又點(diǎn)
在橢圓
上.
(1)求橢圓的方程;
(2)已知直線的斜率為
,若直線
與橢圓
交于
、
兩點(diǎn),求
面積的最大值.
已知最小正周期為2的函數(shù)當(dāng)
時(shí),
,則函數(shù)
的圖象與
的圖象的交點(diǎn)個(gè)數(shù)為
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com