題目列表(包括答案和解析)
(本題滿(mǎn)分14分)
已知實(shí)數(shù),曲線(xiàn)
與直線(xiàn)
的交點(diǎn)為
(異于原點(diǎn)
),在曲線(xiàn)
上取一點(diǎn)
,過(guò)點(diǎn)
作
平行于
軸,交直線(xiàn)
于點(diǎn)
,過(guò)點(diǎn)
作
平行于
軸,交曲線(xiàn)
于點(diǎn)
,接著過(guò)點(diǎn)
作
平行于
軸,交直線(xiàn)
于點(diǎn)
,過(guò)點(diǎn)
作
平行于
軸,交曲線(xiàn)
于點(diǎn)
,如此下去,可以得到點(diǎn)
,
,…,
,… . 設(shè)點(diǎn)
的坐標(biāo)為
,
.
(Ⅰ)試用表示
,并證明
;
(Ⅱ)試證明,且
(
);
(本題滿(mǎn)分14分)
已知函數(shù)圖象上一點(diǎn)
處的切線(xiàn)方程為
.
(Ⅰ)求的值;
(Ⅱ)若方程在
內(nèi)有兩個(gè)不等實(shí)根,求
的取值范圍(其中
為自然對(duì)數(shù)的底數(shù));
(Ⅲ)令,若
的圖象與
軸交于
,
(其中
),
的中點(diǎn)為
,求證:
在
處的導(dǎo)數(shù)
.
(本題滿(mǎn)分14分)
已知曲線(xiàn)方程為
,過(guò)原點(diǎn)O作曲線(xiàn)
的切線(xiàn)
(1)求的方程;
(2)求曲線(xiàn),
及
軸圍成的圖形面積S;
(本題滿(mǎn)分14分)
已知中心在原點(diǎn),對(duì)稱(chēng)軸為坐標(biāo)軸的橢圓,左焦點(diǎn),一個(gè)頂點(diǎn)坐標(biāo)為(0,1)
(1)求橢圓方程;
(2)直線(xiàn)過(guò)橢圓的右焦點(diǎn)
交橢圓于A、B兩點(diǎn),當(dāng)△AOB面積最大時(shí),求直線(xiàn)
方程。
(本題滿(mǎn)分14分)
如圖,在直三棱柱中,
,
,求二面角
的大小。
1.1 2. 3.
4.-8 5.
6.20
7.
8.1 9.0 10. 11.
12.
13.
14.(1005,1004)
15.⑴ ∵ ,……………………………… 2分
又∵ ,∴
而
為斜三角形,
∵,∴
. ……………………………………………………………… 4分
∵,∴
. …………………………………………………… 6分
⑵∵,∴
…12分
即,∵
,∴
.…………………………………14分
16.⑴∵平面
,
平面
,所以
,…2分
∵是菱形,∴
,又
,
∴平面
,……………………………………………………4分
又∵平面
,∴平面
平面
. ……………………………………6分
⑵取
中點(diǎn)
,連接
,則
,
∵是菱形,∴
,
∵為
的中點(diǎn),∴
,………………10分
∴.
∴四邊形是平行四邊形,∴
,………………12分
又∵平面
,
平面
.
∴平面
. ………………………………………………………………14分
17.(1)∵直線(xiàn)過(guò)點(diǎn)
,且與圓
:
相切,
設(shè)直線(xiàn)的方程為
,即
, …………………………2分
則圓心到直線(xiàn)
的距離為
,解得
,
∴直線(xiàn)的方程為
,即
.
…… …………………4分
(2)對(duì)于圓方程,令
,得
,即
.又直線(xiàn)
過(guò)點(diǎn)
且與
軸垂直,∴直線(xiàn)
方程為
,設(shè)
,則直線(xiàn)
方程為
解方程組,得
同理可得,
……………… 10分
∴以為直徑的圓
的方程為
,
又,∴整理得
,……………………… 12分
若圓經(jīng)過(guò)定點(diǎn),只需令
,從而有
,解得
,
∴圓總經(jīng)過(guò)定點(diǎn)坐標(biāo)為
.
…………………………………………… 14分
18.⑴因?yàn)楫?dāng)時(shí),
,所以
,
……4分
∴ ………………………………………………………6分
⑵設(shè)每小時(shí)通過(guò)的車(chē)輛為,則
.即
……12分
∵,…………………………………………………14分
∴
,當(dāng)且僅當(dāng)
,即
時(shí),
取最大值
.
答:當(dāng)時(shí),大橋每小時(shí)通過(guò)的車(chē)輛最多.………16分
19.(1)由,得
∴b、c所滿(mǎn)足的關(guān)系式為.……………………2分
(2)由,
,可得
.
方程,即
,可化為
,
令,則由題意可得,
在
上有唯一解,…4分
令,由
,可得
,
當(dāng)時(shí),由
,可知
是增函數(shù);
當(dāng)時(shí),由
,可知
是減函數(shù).故當(dāng)
時(shí),
取極大值
.………6分
由函數(shù)的圖象可知,當(dāng)
或
時(shí),方程
有且僅有一個(gè)正實(shí)數(shù)解.
故所求的取值范圍是
或
. ……………………………………………8分
(3)由,
,可得
.由
且
且
且
.…10分
當(dāng)時(shí),
;當(dāng)
時(shí),
;
當(dāng)時(shí)(
),
;當(dāng)
時(shí),
且
;
當(dāng)時(shí),
∪
.
………………………16分
注:可直接通過(guò)研究函數(shù)與
的圖象來(lái)解決問(wèn)題.
20.(1)由,且等差數(shù)列
的公差為
,可知
,
若插入的一個(gè)數(shù)在之間,則
,
,
消去可得
,其正根為
.
………………………………2分
若插入的一個(gè)數(shù)在之間,則
,
,
消去可得
,此方程無(wú)正根.故所求公差
.………4分
(2)設(shè)在之間插入
個(gè)數(shù),在
之間插入
個(gè)數(shù),則
,在等比數(shù)列
中,
∵,
…,
,
∴…
…
………………8分
又∵,
,
都為奇數(shù),∴
可以為正數(shù),也可以為負(fù)數(shù).
①若為正數(shù),則
…
,所插入
個(gè)數(shù)的積為
;
②若為負(fù)數(shù),
…
中共有
個(gè)負(fù)數(shù),
當(dāng)是奇數(shù),即
N*)時(shí),所插入
個(gè)數(shù)的積為
;
當(dāng)是偶數(shù),即
N*)時(shí),所插入
個(gè)數(shù)的積為
.
綜上所述,當(dāng)N*)時(shí),所插入
個(gè)數(shù)的積為
;
當(dāng)N*)時(shí),所插入
個(gè)數(shù)的積為
.…………10分
注:可先將…
用
和
表示,然后再利用條件消去
進(jìn)行求解.
(3)∵在等比數(shù)列,由
,可得
,同理可得
,
∴,即
,
…………………………12分
假設(shè)是有理數(shù),若
為整數(shù),∵
是正數(shù),且
,∴
,
在中,∵
是
的倍數(shù),故1也是
的倍數(shù),矛盾.
若不是整數(shù),可設(shè)
(其中
為互素的整數(shù),
),
則有,即
,
∵,可得
,∴
是x的倍數(shù),即
是x的倍數(shù),矛盾.
∴ 是無(wú)理數(shù).……………………………………16分
附加題部分
21B.設(shè)為曲線(xiàn)
上的任意一點(diǎn),在矩陣A變換下得到另一點(diǎn)
,
則有,…………………………………………………………4分
即
∴
…………………………………8分
又因?yàn)辄c(diǎn)P在曲線(xiàn)上,所以
,
故有, 即所得曲線(xiàn)方程
.……………………………………… 10分
的極坐標(biāo)方程化為直角坐標(biāo)方程為
,
即,它表示以
為圓心,2為半徑的圓, …………………4分
直線(xiàn)方程的普通方程為
,
………………6分
圓的圓心到直線(xiàn)
的距離
,………………………………………………………8分
故所求弦長(zhǎng)為.
………………………………………………10分
21D.由柯西不等式可得
.…10分
22.以點(diǎn)
為坐標(biāo)原點(diǎn), 以
分別為
軸,
建立如圖空間直角坐標(biāo)系, 不妨設(shè) 則
,∴
,
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com