題目列表(包括答案和解析)
函數的最小正周期為
,
(Ⅰ)求的單調遞增區(qū)間;
(Ⅱ)在中,角A,B,C的對邊分別是
,且滿足
,
求角B的值,并求函數的取值范圍.
函數的最小正周期為
A. B.
C.
D.
函數的最小正周期為( )
A. B.
C.
D.
函數的最小正周期為 .
函數的最小正周期為 .
一、 選擇題(每小題5分,共60分)
BBDACA CDBDBA
二、填空題(每小題4分,共16分)
13. 14.
15.
16.
三、解答題
17.(本小題滿分12分)
解:(Ⅰ)∵,
由,得
兩邊平方:=
,∴
=
………………6分
(Ⅱ)∵,
∴,解得
,
又∵,
∴
,
∴,
,
設的夾角為
,則
,∴
即的夾角為
. …………… 12分
18. (本小題滿分12分)
解:(Ⅰ)小王在第三次考試中通過而領到駕照的概率為:
………………………6分
(Ⅱ)小王在一年內領到駕照的概率為:
………………12分
19.(本小題滿分12分)
(Ⅰ)證明:由已知得,所以
,即
,
又,
,∴
,
平面
∴平面平面
.……………………………4分(文6分)
(Ⅱ)解:設的中點為
,連接
,則
∥
,
∴是異面直線
和
所成的角或其補角
由(Ⅰ)知,在
中,
,
,
∴.
所以異面直線和
所成的角為
.…………………8分(文12分)
20.(本小題滿分12分)
解:(Ⅰ)∵
據題意,,
∴ ………………………4分
(Ⅱ)由(Ⅰ)知,
∴
則
∴對于,
最小值為
………………… 8分
∵的對稱軸為
,且拋物線開口向下,
∴時,
最小值為
與
中較小的,
∵,
∴當時,
的最小值是-7.
∴的最小值為-11. ………………………12分
21.(本小題滿分12分)
解:(Ⅰ)∵
∴
∴
令,則
,∴
,∴
∴.……………6分
(Ⅱ)證明:由(Ⅰ)知:
記
用錯位相減法求和得:
令,
∵
∴數列是遞減數列,∴
,
∴.
即.………………………12分
(由證明也給滿分)
22.(本小題滿分14分)
解:(Ⅰ)①當直線軸時,
則,此時
,∴
.
(不討論扣1分)
②當直線不垂直于
軸時,
,設雙曲線的右準線為
,
作于
,作
于
,作
于
且交
軸于
根據雙曲線第二定義有:,
而到準線
的距離為
.
由,得:
,
∴,∴
,∵此時
,∴
綜上可知.………………………………………7分
(Ⅱ)設:
,代入雙曲線方程得
∴
令,則
,且
代入上面兩式得:
①
②
由①②消去得
即 ③
由有:
,綜合③式得
由得
,解得
∴的取值范圍為
…………………………14分
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com