題目列表(包括答案和解析)
已知冪函數滿足
。
(1)求實數k的值,并寫出相應的函數的解析式;
(2)對于(1)中的函數,試判斷是否存在正數m,使函數
,在區(qū)間上的最大值為5。若存在,求出m的值;若不存在,請說明理由。
【解析】本試題主要考查了函數的解析式的求解和函數的最值的運用。第一問中利用,冪函數滿足
,得到
因為,所以k=0,或k=1,故解析式為
(2)由(1)知,,
,因此拋物線開口向下,對稱軸方程為:
,結合二次函數的對稱軸,和開口求解最大值為5.,得到
(1)對于冪函數滿足
,
因此,解得
,………………3分
因為,所以k=0,或k=1,當k=0時,
,
當k=1時,,綜上所述,k的值為0或1,
!6分
(2)函數,………………7分
由此要求,因此拋物線開口向下,對稱軸方程為:
,
當時,
,因為在區(qū)間
上的最大值為5,
所以,或
…………………………………………10分
解得滿足題意
((本小題共13分)
若數列滿足
,數列
為
數列,記
=
.
(Ⅰ)寫出一個滿足,且
〉0的
數列
;
(Ⅱ)若,n=2000,證明:E數列
是遞增數列的充要條件是
=2011;
(Ⅲ)對任意給定的整數n(n≥2),是否存在首項為0的E數列,使得
=0?如果存在,寫出一個滿足條件的E數列
;如果不存在,說明理由。
【解析】:(Ⅰ)0,1,2,1,0是一具滿足條件的E數列A5。
(答案不唯一,0,1,0,1,0也是一個滿足條件的E的數列A5)
(Ⅱ)必要性:因為E數列A5是遞增數列,所以.所以A5是首項為12,公差為1的等差數列.所以a2000=12+(2000—1)×1=2011.充分性,由于a2000—a1000
1,a2000—a1000
1……a2—a1
1所以a2000—a
19999,即a2000
a1+1999.又因為a1=12,a2000=2011,所以a2000=a1+1999.故
是遞增數列.綜上,結論得證。
已知函數的最小值為0,其中
(Ⅰ)求的值;
(Ⅱ)若對任意的有
≤
成立,求實數
的最小值;
(Ⅲ)證明(
).
【解析】(1)解:
的定義域為
由,得
當x變化時,,
的變化情況如下表:
x |
|
|
|
|
- |
0 |
+ |
|
|
極小值 |
|
因此,在
處取得最小值,故由題意
,所以
(2)解:當時,取
,有
,故
時不合題意.當
時,令
,即
令,得
①當時,
,
在
上恒成立。因此
在
上單調遞減.從而對于任意的
,總有
,即
在
上恒成立,故
符合題意.
②當時,
,對于
,
,故
在
上單調遞增.因此當取
時,
,即
不成立.
故不合題意.
綜上,k的最小值為.
(3)證明:當n=1時,不等式左邊==右邊,所以不等式成立.
當時,
在(2)中取,得
,
從而
所以有
綜上,,
已知遞增等差數列滿足:
,且
成等比數列.
(1)求數列的通項公式
;
(2)若不等式對任意
恒成立,試猜想出實數
的最小值,并證明.
【解析】本試題主要考查了數列的通項公式的運用以及數列求和的運用。第一問中,利用設數列公差為
,
由題意可知,即
,解得d,得到通項公式,第二問中,不等式等價于
,利用當
時,
;當
時,
;而
,所以猜想,
的最小值為
然后加以證明即可。
解:(1)設數列公差為
,由題意可知
,即
,
解得或
(舍去). …………3分
所以,. …………6分
(2)不等式等價于,
當時,
;當
時,
;
而,所以猜想,
的最小值為
. …………8分
下證不等式對任意
恒成立.
方法一:數學歸納法.
當時,
,成立.
假設當時,不等式
成立,
當時,
,
…………10分
只要證 ,只要證
,
只要證 ,只要證
,
只要證 ,顯然成立.所以,對任意
,不等式
恒成立.…14分
方法二:單調性證明.
要證
只要證 ,
設數列的通項公式
, …………10分
, …………12分
所以對,都有
,可知數列
為單調遞減數列.
而,所以
恒成立,
故的最小值為
.
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com