題目列表(包括答案和解析)
在四棱錐中,
平面
,底面
為矩形,
.
(Ⅰ)當時,求證:
;
(Ⅱ)若邊上有且只有一個點
,使得
,求此時二面角
的余弦值.
【解析】第一位女利用線面垂直的判定定理和性質(zhì)定理得到。當a=1時,底面ABCD為正方形,
又因為,
………………2分
又,得證。
第二問,建立空間直角坐標系,則B(1,0,1)D(0,a,0)C(1,a,0)P(0,0,1)……4分
設(shè)BQ=m,則Q(1,m,0)(0《m《a》
要使,只要
所以,即
………6分
由此可知時,存在點Q使得
當且僅當m=a-m,即m=a/2時,BC邊上有且只有一個點Q,使得
由此知道a=2, 設(shè)平面POQ的法向量為
,所以
平面PAD的法向量
則的大小與二面角A-PD-Q的大小相等所以
因此二面角A-PD-Q的余弦值為
解:(Ⅰ)當時,底面ABCD為正方形,
又因為,
又
………………3分
(Ⅱ) 因為AB,AD,AP兩兩垂直,分別以它們所在直線為X軸、Y軸、Z軸建立坐標系,如圖所示,
則B(1,0,1)D(0,a,0)C(1,a,0)P(0,0,1)…………4分
設(shè)BQ=m,則Q(1,m,0)(0《m《a》要使,只要
所以,即
………6分
由此可知時,存在點Q使得
當且僅當m=a-m,即m=a/2時,BC邊上有且只有一個點Q,使得由此知道a=2,
設(shè)平面POQ的法向量為
,所以
平面PAD的法向量
則的大小與二面角A-PD-Q的大小相等所以
因此二面角A-PD-Q的余弦值為
如圖所示,PA⊥平面ABCD,ABCD是矩形,AB=1,,點F是PB的中點,點E在邊BC上移動.
(1)若,求證:
;
(2)若二面角的大小為
,則CE為何值時,三棱錐
的體積為
.
3 |
6 |
如圖,四棱柱中,
平面
,底面
是邊長為
的正方形,側(cè)棱
.
。ǎ保┣笕忮F的體積;
。ǎ玻┣笾本與平面
所成角的正弦值;
。ǎ常┤衾上存在一點
,使得
,當二面角
的大小為
時,求實數(shù)
的值.
【解析】(1)在中,
.
(3’)
(2)以點D為坐標原點,建立如圖所示的空間直角坐標系,則
(4’)
,設(shè)平面
的法向量為
,
由得
,
(5’)
則,
. (7’)
(3)
設(shè)平面的法向量為
,由
得
,
(10’)
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com