題目列表(包括答案和解析)
設(shè)、
分別是橢圓
:
的左右焦點。
(Ⅰ)設(shè)橢圓上的點
到兩點
、
距離之和等于
,寫出橢圓
的方程和焦點坐標;
(Ⅱ)設(shè)是(1)中所得橢圓上的動點,求線段
的中點
的軌跡方程;
(Ⅲ)設(shè)點是橢圓
上的任意一點,過原點的直線
與橢圓相交于
,
兩點,當直線
,
的斜率都存在,并記為
,
,試探究
的值是否與點
及直線
有關(guān),不必證明你的結(jié)論。
已知、
分別為橢圓
:
的上、下焦點,其中
也是拋物線
:
的焦點,點
是
與
在第二象限的交點,且
。
(Ⅰ)求橢圓的方程;
(Ⅱ)已知點(1,3)和圓
:
,過點
的動直線
與圓
相交于不同的兩點
,在線段
取一點
,滿足:
,
(
且
)。
求證:點總在某定直線上。
已知、
分別為橢圓
:
的上、下焦點,其中
也是拋物線
:
的焦點,點
是
與
在第二象限的交點,且
。
(Ⅰ)求橢圓的方程;
(Ⅱ)已知點(1,3)和圓
:
,過點
的動直線
與圓
相交于不同的兩點
,在線段
取一點
,滿足:
,
(
且
)。
求證:點總在某定直線上。
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com