題目列表(包括答案和解析)
在平面直角坐標(biāo)系中,圓M∶(x-1)2+(y-1)2=5在點A(3,2)處的切線方程可如下求解:設(shè)P(x,y)為切線上任一點,則由向量方法可得切線方程為:2x+y-8=0,類似地,在空間直角坐標(biāo)系中,球M∶(x-1)2+(y-1)2+(z-1)2=6在點A(3,2,2)處的切面方程為________.
如圖,在三棱錐中,平面
平面
,
,
,
,
為
中點.(Ⅰ)求點B到平面
的距離;(Ⅱ)求二面角
的余弦值.
【解析】第一問中利用因為,
為
中點,所以
而平面平面
,所以
平面
,再由題設(shè)條件知道可以分別以
、
、
為
,
,
軸建立直角坐標(biāo)系得
,
,
,
,
,
,
故平面的法向量
而
,故點B到平面
的距離
第二問中,由已知得平面的法向量
,平面
的法向量
故二面角的余弦值等于
解:(Ⅰ)因為,
為
中點,所以
而平面平面
,所以
平面
,
再由題設(shè)條件知道可以分別以、
、
為
,
,
軸建立直角坐標(biāo)系,得
,
,
,
,
,
,故平面
的法向量
而,故點B到平面
的距離
(Ⅱ)由已知得平面的法向量
,平面
的法向量
故二面角的余弦值等于
如圖,在四棱錐P-ABCD中,PA⊥平面ABCD,AC⊥AD,AB⊥BC,∠BAC=45°,PA=AD=2,AC=1.
(Ⅰ)證明PC⊥AD;
(Ⅱ)求二面角A-PC-D的正弦值;
(Ⅲ)設(shè)E為棱PA上的點,滿足異面直線BE與CD所成的角為30°,求AE的長.
【解析】解法一:如圖,以點A為原點建立空間直角坐標(biāo)系,依題意得A(0,0,0),D(2,0,0),C(0,1,0), ,P(0,0,2).
(1)證明:易得,
于是
,所以
(2) ,
設(shè)平面PCD的法向量
,
則,即
.不防設(shè)
,可得
.可取平面PAC的法向量
于是
從而
.
所以二面角A-PC-D的正弦值為.
(3)設(shè)點E的坐標(biāo)為(0,0,h),其中,由此得
.
由,故
所以,,解得
,即
.
解法二:(1)證明:由,可得
,又由
,
,故
.又
,所以
.
(2)如圖,作于點H,連接DH.由
,
,可得
.
因此,從而
為二面角A-PC-D的平面角.在
中,
,由此得
由(1)知
,故在
中,
因此所以二面角
的正弦值為
.
(3)如圖,因為,故過點B作CD的平行線必與線段AD相交,設(shè)交點為F,連接BE,EF. 故
或其補角為異面直線BE與CD所成的角.由于BF∥CD,故
.在
中,
故
在中,由
,
,
可得.由余弦定理,
,
所以.
在四棱錐中,
平面
,底面
為矩形,
.
(Ⅰ)當(dāng)時,求證:
;
(Ⅱ)若邊上有且只有一個點
,使得
,求此時二面角
的余弦值.
【解析】第一位女利用線面垂直的判定定理和性質(zhì)定理得到。當(dāng)a=1時,底面ABCD為正方形,
又因為,
………………2分
又,得證。
第二問,建立空間直角坐標(biāo)系,則B(1,0,1)D(0,a,0)C(1,a,0)P(0,0,1)……4分
設(shè)BQ=m,則Q(1,m,0)(0《m《a》
要使,只要
所以,即
………6分
由此可知時,存在點Q使得
當(dāng)且僅當(dāng)m=a-m,即m=a/2時,BC邊上有且只有一個點Q,使得
由此知道a=2, 設(shè)平面POQ的法向量為
,所以
平面PAD的法向量
則的大小與二面角A-PD-Q的大小相等所以
因此二面角A-PD-Q的余弦值為
解:(Ⅰ)當(dāng)時,底面ABCD為正方形,
又因為,
又
………………3分
(Ⅱ) 因為AB,AD,AP兩兩垂直,分別以它們所在直線為X軸、Y軸、Z軸建立坐標(biāo)系,如圖所示,
則B(1,0,1)D(0,a,0)C(1,a,0)P(0,0,1)…………4分
設(shè)BQ=m,則Q(1,m,0)(0《m《a》要使,只要
所以,即
………6分
由此可知時,存在點Q使得
當(dāng)且僅當(dāng)m=a-m,即m=a/2時,BC邊上有且只有一個點Q,使得由此知道a=2,
設(shè)平面POQ的法向量為
,所以
平面PAD的法向量
則的大小與二面角A-PD-Q的大小相等所以
因此二面角A-PD-Q的余弦值為
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com