8天堂资源在线,国产成人久久av免费高潮,国产精品亚洲综合色区韩国,国产欧美va天堂在线观看视频,xx色综合

(Ⅱ)過(guò)點(diǎn)S(.0)的動(dòng)直線l交橢圓C于A.B兩點(diǎn).試 查看更多

 

題目列表(包括答案和解析)

第三部分 運(yùn)動(dòng)學(xué)

第一講 基本知識(shí)介紹

一. 基本概念

1.  質(zhì)點(diǎn)

2.  參照物

3.  參照系——固連于參照物上的坐標(biāo)系(解題時(shí)要記住所選的是參照系,而不僅是一個(gè)點(diǎn))

4.絕對(duì)運(yùn)動(dòng),相對(duì)運(yùn)動(dòng),牽連運(yùn)動(dòng):v=v+v 

二.運(yùn)動(dòng)的描述

1.位置:r=r(t) 

2.位移:Δr=r(t+Δt)-r(t)

3.速度:v=limΔt→0Δr/Δt.在大學(xué)教材中表述為:v=dr/dt, 表示r對(duì)t 求導(dǎo)數(shù)

5.以上是運(yùn)動(dòng)學(xué)中的基本物理量,也就是位移、位移的一階導(dǎo)數(shù)、位移的二階導(dǎo)數(shù)?墒

三階導(dǎo)數(shù)為什么不是呢?因?yàn)榕nD第二定律是F=ma,即直接和加速度相聯(lián)系。(a對(duì)t的導(dǎo)數(shù)叫“急動(dòng)度”。)

6.由于以上三個(gè)量均為矢量,所以在運(yùn)算中用分量表示一般比較好

三.等加速運(yùn)動(dòng)

v(t)=v0+at           r(t)=r0+v0t+1/2 at

 一道經(jīng)典的物理問(wèn)題:二次世界大戰(zhàn)中物理學(xué)家曾經(jīng)研究,當(dāng)大炮的位置固定,以同一速度v0沿各種角度發(fā)射,問(wèn):當(dāng)飛機(jī)在哪一區(qū)域飛行之外時(shí),不會(huì)有危險(xiǎn)?(注:結(jié)論是這一區(qū)域?yàn)橐粧佄锞,此拋物線是所有炮彈拋物線的包絡(luò)線。此拋物線為在大炮上方h=v2/2g處,以v0平拋物體的軌跡。) 

練習(xí)題:

一盞燈掛在離地板高l2,天花板下面l1處。燈泡爆裂,所有碎片以同樣大小的速度v 朝各個(gè)方向飛去。求碎片落到地板上的半徑(認(rèn)為碎片和天花板的碰撞是完全彈性的,即切向速度不變,法向速度反向;碎片和地板的碰撞是完全非彈性的,即碰后靜止。)

四.剛體的平動(dòng)和定軸轉(zhuǎn)動(dòng)

1. 我們講過(guò)的圓周運(yùn)動(dòng)是平動(dòng)而不是轉(zhuǎn)動(dòng) 

  2.  角位移φ=φ(t), 角速度ω=dφ/dt , 角加速度ε=dω/dt

 3.  有限的角位移是標(biāo)量,而極小的角位移是矢量

4.  同一剛體上兩點(diǎn)的相對(duì)速度和相對(duì)加速度 

兩點(diǎn)的相對(duì)距離不變,相對(duì)運(yùn)動(dòng)軌跡為圓弧,VA=VB+VAB,在AB連線上

投影:[VA]AB=[VB]AB,aA=aB+aAB,aAB=,anAB+,aτAB, ,aτAB垂直于AB,,anAB=VAB2/AB 

例:A,B,C三質(zhì)點(diǎn)速度分別V,VB  ,VC      

求G的速度。

五.課后習(xí)題:

一只木筏離開(kāi)河岸,初速度為V,方向垂直于岸邊,航行路線如圖。經(jīng)過(guò)時(shí)間T木筏劃到路線上標(biāo)有符號(hào)處。河水速度恒定U用作圖法找到在2T,3T,4T時(shí)刻木筏在航線上的確切位置。

五、處理問(wèn)題的一般方法

(1)用微元法求解相關(guān)速度問(wèn)題

例1:如圖所示,物體A置于水平面上,A前固定一滑輪B,高臺(tái)上有一定滑輪D,一根輕繩一端固定在C點(diǎn),再繞過(guò)B、D,BC段水平,當(dāng)以恒定水平速度v拉繩上的自由端時(shí),A沿水平面前進(jìn),求當(dāng)跨過(guò)B的兩段繩子的夾角為α?xí)r,A的運(yùn)動(dòng)速度。

(vA

(2)拋體運(yùn)動(dòng)問(wèn)題的一般處理方法

  1. 平拋運(yùn)動(dòng)
  2. 斜拋運(yùn)動(dòng)
  3. 常見(jiàn)的處理方法

(1)將斜上拋運(yùn)動(dòng)分解為水平方向的勻速直線運(yùn)動(dòng)和豎直方向的豎直上拋運(yùn)動(dòng)

(2)將沿斜面和垂直于斜面方向作為x、y軸,分別分解初速度和加速度后用運(yùn)動(dòng)學(xué)公式解題

(3)將斜拋運(yùn)動(dòng)分解為沿初速度方向的斜向上的勻速直線運(yùn)動(dòng)和自由落體運(yùn)動(dòng)兩個(gè)分運(yùn)動(dòng),用矢量合成法則求解

例2:在擲鉛球時(shí),鉛球出手時(shí)距地面的高度為h,若出手時(shí)的速度為V0,求以何角度擲球時(shí),水平射程最遠(yuǎn)?最遠(yuǎn)射程為多少?

(α=、 x=

第二講 運(yùn)動(dòng)的合成與分解、相對(duì)運(yùn)動(dòng)

(一)知識(shí)點(diǎn)點(diǎn)撥

  1. 力的獨(dú)立性原理:各分力作用互不影響,單獨(dú)起作用。
  2. 運(yùn)動(dòng)的獨(dú)立性原理:分運(yùn)動(dòng)之間互不影響,彼此之間滿足自己的運(yùn)動(dòng)規(guī)律
  3. 力的合成分解:遵循平行四邊形定則,方法有正交分解,解直角三角形等
  4. 運(yùn)動(dòng)的合成分解:矢量合成分解的規(guī)律方法適用
    1. 位移的合成分解 B.速度的合成分解 C.加速度的合成分解

參考系的轉(zhuǎn)換:動(dòng)參考系,靜參考系

相對(duì)運(yùn)動(dòng):動(dòng)點(diǎn)相對(duì)于動(dòng)參考系的運(yùn)動(dòng)

絕對(duì)運(yùn)動(dòng):動(dòng)點(diǎn)相對(duì)于靜參考系統(tǒng)(通常指固定于地面的參考系)的運(yùn)動(dòng)

牽連運(yùn)動(dòng):動(dòng)參考系相對(duì)于靜參考系的運(yùn)動(dòng)

(5)位移合成定理:SA對(duì)地=SA對(duì)B+SB對(duì)地

速度合成定理:V絕對(duì)=V相對(duì)+V牽連

加速度合成定理:a絕對(duì)=a相對(duì)+a牽連

(二)典型例題

(1)火車(chē)在雨中以30m/s的速度向南行駛,雨滴被風(fēng)吹向南方,在地球上靜止的觀察者測(cè)得雨滴的徑跡與豎直方向成21角,而坐在火車(chē)?yán)锍丝涂吹接甑蔚膹桔E恰好豎直方向。求解雨滴相對(duì)于地的運(yùn)動(dòng)。

提示:矢量關(guān)系入圖

答案:83.7m/s

(2)某人手拿一只停表,上了一次固定樓梯,又以不同方式上了兩趟自動(dòng)扶梯,為什么他可以根據(jù)測(cè)得的數(shù)據(jù)來(lái)計(jì)算自動(dòng)扶梯的臺(tái)階數(shù)?

提示:V人對(duì)梯=n1/t1

      V梯對(duì)地=n/t2

      V人對(duì)地=n/t3

V人對(duì)地= V人對(duì)梯+ V梯對(duì)地

答案:n=t2t3n1/(t2-t3)t1

(3)某人駕船從河岸A處出發(fā)橫渡,如果使船頭保持跟河岸垂直的方向航行,則經(jīng)10min后到達(dá)正對(duì)岸下游120m的C處,如果他使船逆向上游,保持跟河岸成а角的方向航行,則經(jīng)過(guò)12.5min恰好到達(dá)正對(duì)岸的B處,求河的寬度。

提示:120=V水*600

        D=V船*600

 答案:200m

(4)一船在河的正中航行,河寬l=100m,流速u(mài)=5m/s,并在距船s=150m的下游形成瀑布,為了使小船靠岸時(shí),不至于被沖進(jìn)瀑布中,船對(duì)水的最小速度為多少?

提示:如圖船航行

答案:1.58m/s

(三)同步練習(xí)

1.一輛汽車(chē)的正面玻璃一次安裝成與水平方向傾斜角為β1=30°,另一次安裝成傾角為β2=15°。問(wèn)汽車(chē)兩次速度之比為多少時(shí),司機(jī)都是看見(jiàn)冰雹都是以豎直方向從車(chē)的正面玻璃上彈開(kāi)?(冰雹相對(duì)地面是豎直下落的)

2、模型飛機(jī)以相對(duì)空氣v=39km/h的速度繞一個(gè)邊長(zhǎng)2km的等邊三角形飛行,設(shè)風(fēng)速u(mài) = 21km/h ,方向與三角形的一邊平行并與飛機(jī)起飛方向相同,試求:飛機(jī)繞三角形一周需多少時(shí)間?

3.圖為從兩列蒸汽機(jī)車(chē)上冒出的兩股長(zhǎng)幅氣霧拖尾的照片(俯視)。兩列車(chē)沿直軌道分別以速度v1=50km/h和v2=70km/h行駛,行駛方向如箭頭所示,求風(fēng)速。

4、細(xì)桿AB長(zhǎng)L ,兩端分別約束在x 、 y軸上運(yùn)動(dòng),(1)試求桿上與A點(diǎn)相距aL(0< a <1)的P點(diǎn)運(yùn)動(dòng)軌跡;(2)如果vA為已知,試求P點(diǎn)的x 、 y向分速度vPx和vPy對(duì)桿方位角θ的函數(shù)。

(四)同步練習(xí)提示與答案

1、提示:利用速度合成定理,作速度的矢量三角形。答案為:3。

2、提示:三角形各邊的方向?yàn)轱w機(jī)合速度的方向(而非機(jī)頭的指向);

第二段和第三段大小相同。

參見(jiàn)右圖,顯然:

v2 =  + u2 - 2vucos120°

可解出 v = 24km/h 。

答案:0.2hour(或12min.)。

3、提示:方法與練習(xí)一類(lèi)似。答案為:3

4、提示:(1)寫(xiě)成參數(shù)方程后消參數(shù)θ。

(2)解法有講究:以A端為參照, 則桿上各點(diǎn)只繞A轉(zhuǎn)動(dòng)。但鑒于桿子的實(shí)際運(yùn)動(dòng)情形如右圖,應(yīng)有v = vAcosθ,v轉(zhuǎn) = vA,可知B端相對(duì)A的轉(zhuǎn)動(dòng)線速度為:v轉(zhuǎn) + vAsinθ=  。

P點(diǎn)的線速度必為  = v 

所以 vPx = vcosθ+ vAx ,vPy = vAy - vsinθ

答案:(1) +  = 1 ,為橢圓;(2)vPx = avActgθ ,vPy =(1 - a)vA

查看答案和解析>>

一.選擇題:本大題共12個(gè)小題,每小題5分,共60分.

ABCCB  ADCCD  BD

二.填空題:本大題共4個(gè)小題,每小題5分,共20分.

13. 6 ;14. 60 ;15.6ec8aac122bd4f6e;16 .446.

三、解答題:本大題共6小題,共70分.解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟.

17. (Ⅰ)設(shè)6ec8aac122bd4f6e的公比為q(q>0),依題意可得

6ec8aac122bd4f6e解得6ec8aac122bd4f6e                                             (5分)

∴數(shù)列6ec8aac122bd4f6e的通項(xiàng)公式為6ec8aac122bd4f6e                                                          (6分)

(Ⅱ)6ec8aac122bd4f6e                                   (10分)

18. (Ⅰ)6ec8aac122bd4f6e(2分)∴6ec8aac122bd4f6e;   (4分)

當(dāng)6ec8aac122bd4f6e,即6ec8aac122bd4f6e,6ec8aac122bd4f6e時(shí)6ec8aac122bd4f6e單調(diào)遞增

∴函數(shù)6ec8aac122bd4f6e的單調(diào)遞增區(qū)間為6ec8aac122bd4f6e                                 (6分)

(Ⅱ)∵6ec8aac122bd4f6e,∴6ec8aac122bd4f6e,∴6ec8aac122bd4f6e     (10分)

∴當(dāng)6ec8aac122bd4f6e時(shí),6ec8aac122bd4f6e有最大值6ec8aac122bd4f6e,此時(shí)6ec8aac122bd4f6e.                    (12分)

19.(Ⅰ)記6ec8aac122bd4f6e表示甲以6ec8aac122bd4f6e獲勝;6ec8aac122bd4f6e表示乙以6ec8aac122bd4f6e獲勝,則6ec8aac122bd4f6e,6ec8aac122bd4f6e互斥,事件6ec8aac122bd4f6e,

6ec8aac122bd4f6e6ec8aac122bd4f6e     (6分)

6ec8aac122bd4f6e(Ⅱ)6ec8aac122bd4f6e記表示甲以6ec8aac122bd4f6e獲勝;6ec8aac122bd4f6e表示甲以6ec8aac122bd4f6e獲勝, 則6ec8aac122bd4f6e,6ec8aac122bd4f6e互斥,事件6ec8aac122bd4f6e, ∴6ec8aac122bd4f6e(12分)

20.                    解法一:(Ⅰ)證明:在直三棱柱6ec8aac122bd4f6e中,

6ec8aac122bd4f6e面ABC,又D為AB中點(diǎn),∴CD⊥面6ec8aac122bd4f6e,∴CD⊥6ec8aac122bd4f6e,∵AB=6ec8aac122bd4f6e,∴6ec8aac122bd4f6e6ec8aac122bd4f6e,

又DE∥6ec8aac122bd4f6e6ec8aac122bd4f6e⊥DE ,又DE∩CD =D

6ec8aac122bd4f6e⊥平面CDE                                     (6分)

(Ⅱ)由()知6ec8aac122bd4f6e⊥平面CDE,設(shè)6ec8aac122bd4f6e與DE交于點(diǎn)M ,

過(guò)B作BN⊥CE,垂足為N,連結(jié)MN , 則A1N⊥CE,故∠A1NM即為二面角6ec8aac122bd4f6e的平面角.                                                                        (9分) 

6ec8aac122bd4f6e6ec8aac122bd4f6e,6ec8aac122bd4f6e,又由△ENM   △EDC得

6ec8aac122bd4f6e.   又∵6ec8aac122bd4f6e

在Rt△A1MN中,tan∠A1NM 6ec8aac122bd4f6e,                                            (12分)

故二面角6ec8aac122bd4f6e的大小為6ec8aac122bd4f6e.                                                     (12分)

6ec8aac122bd4f6e解法二:AC=BC=2,AB=6ec8aac122bd4f6e,可得AC⊥BC,故可以C為坐標(biāo)原點(diǎn)建立如圖所示直角

坐標(biāo)系C-xyz.則C(0,0,0),A(2,0,0),B(0,2,0),

D(1,1,0),E (0,2,6ec8aac122bd4f6e),6ec8aac122bd4f6e(2,0,6ec8aac122bd4f6e)(3分)

(Ⅰ)6ec8aac122bd4f6e(-2,2,-6ec8aac122bd4f6e),6ec8aac122bd4f6e(1,1,0),

6ec8aac122bd4f6e(0,2,6ec8aac122bd4f6e).∵6ec8aac122bd4f6e,6ec8aac122bd4f6e

6ec8aac122bd4f6e6ec8aac122bd4f6e 又CE∩CD =C

6ec8aac122bd4f6e⊥平面CDE                            (6分)

 

 

(Ⅱ)設(shè)平面A1CE的一個(gè)法向量為n=(x,y,z),   6ec8aac122bd4f6e(2,0,6ec8aac122bd4f6e),

6ec8aac122bd4f6e(0,2,6ec8aac122bd4f6e).∴由n6ec8aac122bd4f6e,n6ec8aac122bd4f6e6ec8aac122bd4f6e,6ec8aac122bd4f6e

6ec8aac122bd4f6e6ec8aac122bd4f6e6ec8aac122bd4f6e,n=(2,1,6ec8aac122bd4f6e)                         (9分)

又由(Ⅰ)知6ec8aac122bd4f6e(-2,2,-6ec8aac122bd4f6e)為平面DCE的法向量.

6ec8aac122bd4f6e等于二面角6ec8aac122bd4f6e的平面角.                          (11分)

6ec8aac122bd4f6e.                                       (12分)

二面角6ec8aac122bd4f6e的大小為6ec8aac122bd4f6e.                              (12分)

21.(6ec8aac122bd4f6e.由題意知6ec8aac122bd4f6e為方程6ec8aac122bd4f6e的兩根

6ec8aac122bd4f6e,得6ec8aac122bd4f6e                             (3分)

從而6ec8aac122bd4f6e,6ec8aac122bd4f6e

當(dāng)6ec8aac122bd4f6e時(shí),6ec8aac122bd4f6e;當(dāng)6ec8aac122bd4f6e6ec8aac122bd4f6e時(shí),6ec8aac122bd4f6e

6ec8aac122bd4f6e6ec8aac122bd4f6e上單調(diào)遞減,在6ec8aac122bd4f6e,6ec8aac122bd4f6e上單調(diào)遞增.     (7分)

(Ⅱ)由()知6ec8aac122bd4f6e6ec8aac122bd4f6e上單調(diào)遞減,6ec8aac122bd4f6e6ec8aac122bd4f6e處取得極值,此時(shí)6ec8aac122bd4f6e,若存在6ec8aac122bd4f6e,使得6ec8aac122bd4f6e

即有6ec8aac122bd4f6e就是6ec8aac122bd4f6e  解得6ec8aac122bd4f6e.              (12分)

故b的取值范圍是6ec8aac122bd4f6e.                                (12分)        

22. ()設(shè)橢圓方程為6ec8aac122bd4f6e(a>b>0),由已知c=1,

又2a= 6ec8aac122bd4f6e.   所以a=6ec8aac122bd4f6e,b2=a2-c2=1,

橢圓C的方程是6ec8aac122bd4f6e+ x2 =1.                                                                  (4分)

  (Ⅱ)若直線l與x軸重合,則以AB為直徑的圓是x2+y2=1,

若直線l垂直于x軸,則以AB為直徑的圓是(x+6ec8aac122bd4f6e)2+y2=6ec8aac122bd4f6e

6ec8aac122bd4f6e解得6ec8aac122bd4f6e即兩圓相切于點(diǎn)(1,0).

因此所求的點(diǎn)T如果存在,只能是(1,0).

事實(shí)上,點(diǎn)T(1,0)就是所求的點(diǎn).證明如下:                             (7分)

當(dāng)直線l垂直于x軸時(shí),以AB為直徑的圓過(guò)點(diǎn)T(1,0).

若直線l不垂直于x軸,可設(shè)直線l:y=k(x+6ec8aac122bd4f6e).

6ec8aac122bd4f6e即(k2+2)x2+6ec8aac122bd4f6ek2x+6ec8aac122bd4f6ek2-2=0.

記點(diǎn)A(x1,y1),B(x2,y2),則6ec8aac122bd4f6e

又因?yàn)?sub>6ec8aac122bd4f6e=(x1-1, y1), 6ec8aac122bd4f6e=(x2-1, y2),

6ec8aac122bd4f6e?6ec8aac122bd4f6e=(x1-1)(x2-1)+y1y2=(x1-1)(x2-1)+k2(x1+6ec8aac122bd4f6e)(x2+6ec8aac122bd4f6e)

=(k2+1)x1x2+(6ec8aac122bd4f6ek2-1)(x1+x2)+6ec8aac122bd4f6ek2+1

=(k2+1) 6ec8aac122bd4f6e+(6ec8aac122bd4f6ek2-1) 6ec8aac122bd4f6e+ 6ec8aac122bd4f6e+1=0,       (11分)

所以TA⊥TB,即以AB為直徑的圓恒過(guò)點(diǎn)T(1,0).

所以在坐標(biāo)平面上存在一個(gè)定點(diǎn)T(1,0)滿足條件.                        (12分)

 

 


同步練習(xí)冊(cè)答案