題目列表(包括答案和解析)
在復(fù)平面內(nèi), 是原點(diǎn),向量
對(duì)應(yīng)的復(fù)數(shù)是
,
=2+i。
(Ⅰ)如果點(diǎn)A關(guān)于實(shí)軸的對(duì)稱點(diǎn)為點(diǎn)B,求向量對(duì)應(yīng)的復(fù)數(shù)
和
;
(Ⅱ)復(fù)數(shù),
對(duì)應(yīng)的點(diǎn)C,D。試判斷A、B、C、D四點(diǎn)是否在同一個(gè)圓上?并證明你的結(jié)論。
【解析】第一問中利用復(fù)數(shù)的概念可知得到由題意得,A(2,1) ∴B(2,-1)
∴ =(0,-2)
∴
=-2i ∵
(2+i)(-2i)=2-4i,
∴
=
第二問中,由題意得,=(2,1)
∴
同理,所以A、B、C、D四點(diǎn)到原點(diǎn)O的距離相等,
∴A、B、C、D四點(diǎn)在以O(shè)為圓心,為半徑的圓上
(Ⅰ)由題意得,A(2,1) ∴B(2,-1)
∴ =(0,-2)
∴
=-2i 3分
∵ (2+i)(-2i)=2-4i,
∴
=
2分
(Ⅱ)A、B、C、D四點(diǎn)在同一個(gè)圓上。 2分
證明:由題意得,=(2,1)
∴
同理,所以A、B、C、D四點(diǎn)到原點(diǎn)O的距離相等,
∴A、B、C、D四點(diǎn)在以O(shè)為圓心,為半徑的圓上
在棱長(zhǎng)為的正方體
中,
是線段
的中點(diǎn),
.
(1) 求證:^
;
(2) 求證://平面
;
(3) 求三棱錐的表面積.
【解析】本試題考查了線線垂直和線面平行的判定定理和表面積公式的運(yùn)用。第一問中,利用,得到結(jié)論,第二問中,先判定
為平行四邊形,然后
,可知結(jié)論成立。
第三問中,是邊長(zhǎng)為
的正三角形,其面積為
,
因?yàn)?img
src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012061917121082894691/SYS201206191714422195910840_ST.files/image017.png">平面,所以
,
所以是直角三角形,其面積為
,
同理的面積為
,
面積為
. 所以三棱錐
的表面積為
.
解: (1)證明:根據(jù)正方體的性質(zhì),
因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012061917121082894691/SYS201206191714422195910840_ST.files/image028.png">,
所以,又
,所以
,
,
所以^
.
………………4分
(2)證明:連接,因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012061917121082894691/SYS201206191714422195910840_ST.files/image033.png">,
所以為平行四邊形,因此
,
由于是線段
的中點(diǎn),所以
, …………6分
因?yàn)?img
src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012061917121082894691/SYS201206191714422195910840_ST.files/image035.png">面
,
平面
,所以
∥平面
. ……………8分
(3)是邊長(zhǎng)為
的正三角形,其面積為
,
因?yàn)?img
src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012061917121082894691/SYS201206191714422195910840_ST.files/image017.png">平面,所以
,
所以是直角三角形,其面積為
,
同理的面積為
,
……………………10分
面積為
. 所以三棱錐
的表面積為
設(shè)點(diǎn)是拋物線
的焦點(diǎn),
是拋物線
上的
個(gè)不同的點(diǎn)(
).
(1) 當(dāng)時(shí),試寫出拋物線
上的三個(gè)定點(diǎn)
、
、
的坐標(biāo),從而使得
;
(2)當(dāng)時(shí),若
,
求證:;
(3) 當(dāng)時(shí),某同學(xué)對(duì)(2)的逆命題,即:
“若,則
.”
開展了研究并發(fā)現(xiàn)其為假命題.
請(qǐng)你就此從以下三個(gè)研究方向中任選一個(gè)開展研究:
① 試構(gòu)造一個(gè)說(shuō)明該逆命題確實(shí)是假命題的反例(本研究方向最高得4分);
② 對(duì)任意給定的大于3的正整數(shù),試構(gòu)造該假命題反例的一般形式,并說(shuō)明你的理由(本研究方向最高得8分);
③ 如果補(bǔ)充一個(gè)條件后能使該逆命題為真,請(qǐng)寫出你認(rèn)為需要補(bǔ)充的一個(gè)條件,并說(shuō)明加上該條件后,能使該逆命題為真命題的理由(本研究方向最高得10分).
【評(píng)分說(shuō)明】本小題若填空不止一個(gè)研究方向,則以實(shí)得分最高的一個(gè)研究方向的得分作為本小題的最終得分.
【解析】第一問利用拋物線的焦點(diǎn)為
,設(shè)
,
分別過作拋物線
的準(zhǔn)線
的垂線,垂足分別為
.
由拋物線定義得到
第二問設(shè),分別過
作拋物線
的準(zhǔn)線
垂線,垂足分別為
.
由拋物線定義得
第三問中①取時(shí),拋物線
的焦點(diǎn)為
,
設(shè),
分別過
作拋物線
的準(zhǔn)線
垂線,垂足分別為
.由拋物線定義得
,
則,不妨取
;
;
;
解:(1)拋物線的焦點(diǎn)為
,設(shè)
,
分別過作拋物線
的準(zhǔn)線
的垂線,垂足分別為
.由拋物線定義得
因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912360984321474/SYS201207091236478588145986_ST.files/image010.png">,所以,
故可取滿足條件.
(2)設(shè),分別過
作拋物線
的準(zhǔn)線
垂線,垂足分別為
.
由拋物線定義得
又因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912360984321474/SYS201207091236478588145986_ST.files/image017.png">
;
所以.
(3) ①取時(shí),拋物線
的焦點(diǎn)為
,
設(shè),
分別過
作拋物線
的準(zhǔn)線
垂線,垂足分別為
.由拋物線定義得
,
則,不妨取
;
;
;
,
則,
.
故,
,
,
是一個(gè)當(dāng)
時(shí),該逆命題的一個(gè)反例.(反例不唯一)
② 設(shè),分別過
作
拋物線的準(zhǔn)線
的垂線,垂足分別為
,
由及拋物線的定義得
,即
.
因?yàn)樯鲜霰磉_(dá)式與點(diǎn)的縱坐標(biāo)無(wú)關(guān),所以只要將這
點(diǎn)都取在
軸的上方,則它們的縱坐標(biāo)都大于零,則
,
而,所以
.
(說(shuō)明:本質(zhì)上只需構(gòu)造滿足條件且的一組
個(gè)不同的點(diǎn),均為反例.)
③ 補(bǔ)充條件1:“點(diǎn)的縱坐標(biāo)
(
)滿足
”,即:
“當(dāng)時(shí),若
,且點(diǎn)
的縱坐標(biāo)
(
)滿足
,則
”.此命題為真.事實(shí)上,設(shè)
,
分別過作拋物線
準(zhǔn)線
的垂線,垂足分別為
,由
,
及拋物線的定義得,即
,則
,
又由,所以
,故命題為真.
補(bǔ)充條件2:“點(diǎn)與點(diǎn)
為偶數(shù),
關(guān)于
軸對(duì)稱”,即:
“當(dāng)時(shí),若
,且點(diǎn)
與點(diǎn)
為偶數(shù),
關(guān)于
軸對(duì)稱,則
”.此命題為真.(證略)
如圖,在正三棱柱ABC-A1B1C1中,底面ABC為正三角形,M、N、G分別是棱CC1、AB、BC的中點(diǎn),且.
(Ⅰ)求證:CN∥平面AMB1;
(Ⅱ)求證: B1M⊥平面AMG.
【解析】本試題主要是考查了立體幾何匯總線面的位置關(guān)系的運(yùn)用。第一問中,要證CN∥平面AMB1;,只需要確定一條直線CN∥MP,既可以得到證明
第二問中,∵CC1⊥平面ABC,∴平面CC1 B1 B⊥平面ABC,得到線線垂直,B1M⊥AG,結(jié)合線面垂直的判定定理和性質(zhì)定理,可以得證。
解:(Ⅰ)設(shè)AB1 的中點(diǎn)為P,連結(jié)NP、MP ………………1分
∵CM
,NP
,∴CM
NP, …………2分
∴CNPM是平行四邊形,∴CN∥MP …………………………3分
∵CN 平面AMB1,MP奐 平面AMB1,∴CN∥平面AMB1…4分
(Ⅱ)∵CC1⊥平面ABC,∴平面CC1 B1 B⊥平面ABC,
∵AG⊥BC,∴AG⊥平面CC1 B1 B,∴B1M⊥AG………………6分
∵CC1⊥平面ABC,平面A1B1C1∥平面ABC,∴CC1⊥AC,CC1⊥B1 C,
設(shè):AC=2a,則
…………………………8分
同理,…………………………………9分
∵ BB1∥CC1,∴BB1⊥平面ABC,∴BB1⊥AB,
………………………………10分
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com