題目列表(包括答案和解析)
對(duì)于函數(shù)f(x),若存在x0∈R,使f(x0)=x0成立,則稱(chēng)x0為f(x)的不動(dòng)點(diǎn) 已知函數(shù)f(x)=ax2+(b+1)x+(b–1)(a≠0)
(1)若a=1,b=–2時(shí),求f(x)的不動(dòng)點(diǎn);
(2)若對(duì)任意實(shí)數(shù)b,函數(shù)f(x)恒有兩個(gè)相異的不動(dòng)點(diǎn),求a的取值范圍;
(3)在(2)的條件下,若y=f(x)圖像上A、B兩點(diǎn)的橫坐標(biāo)是函數(shù)f(x)的不動(dòng)點(diǎn),且A、B關(guān)于直線y=kx+對(duì)稱(chēng),求b的最小值.
對(duì)于函數(shù)f(x),若存在xo∈R,使f(xo)=xo成立,則xo為f(x)的不動(dòng)點(diǎn).已知函數(shù)f(x)=ax2+(b+1)x+(b-1)(a≠0).
(1)當(dāng)a=1,b=-2時(shí),求函數(shù)f(x)的不動(dòng)點(diǎn);
(2)若對(duì)任意實(shí)數(shù)b,函數(shù)f(x)恒有兩個(gè)相異的不動(dòng)點(diǎn),求 a的取值范圍;
(3)在(2)的條件下,若y=f(x)圖象上A、B兩點(diǎn)的橫坐標(biāo)是函數(shù)f(x)的不動(dòng)點(diǎn),且A、B兩點(diǎn)關(guān)于直線y=kx+對(duì)稱(chēng),求b的最小值.
(1)當(dāng)a=1,b=-2時(shí),求函數(shù)f(x)的不動(dòng)點(diǎn);
(2)若對(duì)任意實(shí)數(shù)b,函數(shù)f(x)恒有兩個(gè)相異的不動(dòng)點(diǎn),求 a的取值范圍;
(3)在(2)的條件下,若y=f(x)圖象上A、B兩點(diǎn)的橫坐標(biāo)是函數(shù)f(x)的不動(dòng)點(diǎn),且A、B兩點(diǎn)關(guān)于直線y=kx+對(duì)稱(chēng),求b的最小值.
已知橢圓的左右焦點(diǎn)分別為
、
,短軸兩個(gè)端點(diǎn)為
、
,且四邊形
是邊長(zhǎng)為2的正方形.
(1)求橢圓方程;
(2)若分別是橢圓長(zhǎng)軸的左右端點(diǎn),動(dòng)點(diǎn)
滿足
,連接
,交橢圓于點(diǎn)
,證明:
為定值;
(3)在(2)的條件下,試問(wèn)軸上是否存在異于點(diǎn)
的定點(diǎn)
,使得以
為直徑的圓恒過(guò)直線
的交點(diǎn)?若存在,求出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
一、填空題
1. 2.
3.156
4. -
5.
6. 7.
8.(理)
(文)
9.0
10. 11.(理)
(文)
二、選擇題
12.C 13.B 14.(理)C (文)B 15.B
三、解答題
16. 【解】(1)由已知:, (2分)
即, (4分)
∴,故
。
(6分)
(2)由,得
, (8分)
∴,
。 (10分)
故。
(12分)
17.【解】
(理)設(shè)三次事件依次為,命中率分別為
,
(1)令,則
,∴
,
,
。 (6分)
(2)。 (13分)
(文)拋物線的準(zhǔn)線是
,
(3分)
雙曲線的兩條漸近線是
。 (6分)
三條線為成得三角形區(qū)域的頂點(diǎn)為,
,
,(10分)
當(dāng)時(shí),
。
(13分)
18.【解】(1),
。(4分)
(2)令,
,
,(8分)
即三位市民各獲得140、100和110元折扣。(10分)
(3)(元)。(16分)
19.【解】(1)直線的法向量
,
的方程:
,
即為;…(2分)
直線的法向量
,
的方程:
,
即為。 (4分)
(2)。 (6分)
設(shè)點(diǎn)的坐標(biāo)為
,由
,得
。(8分)
由橢圓的定義的知存在兩個(gè)定點(diǎn),使得
恒為定值4。
此時(shí)兩個(gè)定點(diǎn)為橢圓的兩個(gè)焦點(diǎn)。(10分)
(3)設(shè),
,則
,
,
由,得
。(12分)
;
當(dāng)且僅當(dāng)或
時(shí),
取最小值
。(14分)
,故
與
平行。(16分)
20.【解】(1)由,得
。由
,得第二行的公差
,
,∴
。(2分)
由,
,得
,∴
。(4分)
(2);(6分)
。(10分)
(3),
, 兩式相減,得
,
。(12分)當(dāng)
時(shí),
。(13分)
①時(shí),
顯然能被21整除;(14分)
②假設(shè)時(shí),
能被21整除,當(dāng)
時(shí),
能被21整除。結(jié)論也成立。(17分)
由①、②可知,當(dāng)是3的倍數(shù)時(shí),
能被21整除。(18分)
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com