題目列表(包括答案和解析)
(15 分)
已知函數
(1)若在的圖象上橫坐標為
的點處存在垂直于y 軸的切線,求a 的值;
(2)若在區(qū)間(-2,3)內有兩個不同的極值點,求a 取值范圍;
(3)在(1)的條件下,是否存在實數m,使得函數的圖象與函數
的圖象恰有三個交點,若存在,試出實數m 的值;若不存在,說明理由.
(本題滿分13 分)
已知函數
(1)若在的圖象上橫坐標為
的點處存在垂直于y 軸的切線,求a 的值;
(2)若在區(qū)間(-2,3)內有兩個不同的極值點,求a 取值范圍;
(3)在(1)的條件下,是否存在實數m,使得函數的圖象與函數
的圖象恰有三個交點,若存在,試出實數m 的值;若不存在,說明理由.
(本小題滿分14分)已知函數
(1)若在的圖象上橫坐標為
的點處存在垂直于y 軸的切線,求a 的值;
(2)若在區(qū)間(-2,3)內有兩個不同的極值點,求a 取值范圍;
(3)在(1)的條件下,是否存在實數m,使得函數的圖象與函數
的圖象恰有三個交點,若存在,試出實數m 的值;若不存在,說明理由.
(本小題滿分14分)已知函數
(1)若在的圖象上橫坐標為
的點處存在垂直于y 軸的切線,求a 的值;
(2)若在區(qū)間(-2,3)內有兩個不同的極值點,求a 取值范圍;
(3)在(1)的條件下,是否存在實數m,使得函數的圖象與函數
的圖象恰有三個交點,若存在,試出實數m 的值;若不存在,說明理由.
一、選擇題(每小題5 分,共40 分)
DACDA DBA
二、填空題(每小題5 分,共35分)
9.
10.400 11.180 12.②④
13.
14.(i)
(3分) (ii)
(2分)
15.(i)(3分); (ii)
(2分)
16.(1)
當
……………………4分
(2)令 ………………6分
解得:
所以,的單調遞增區(qū)間是
…………8分
(3)由,……………………10分
所以,
解得:
所以,的取值集合
……12分
17.解:(1)坐A 班車的三人中恰有2 人正點到達的概率為
P3(2)=
C0.72×0.31 =
0.441 ……………………(6 分)
(2)記“A 班車正點到達”為事件M,“B 班車正點到達冶為事件N
則兩人中至少有一人正點到達的概率為
P
= P(M?N)+
P(M?)+ P(
?N)
= 0.7 ×0.75 + 0.7 ×0.25 + 0.3 ×0.75 = 0.525 + 0.175 + 0.225 = 0.925 (12 分)
18.解:由已知得
所以數列{}是以1為首項,公差為1的等差數列;(2分)
即=1+
…………………………4分
(2)由(1)知 ……………………6分
…………………………8分
……………………10分
所以:…………………………12分
19.解:M、N、Q、B的位置如右圖示。(正確標出給1分)
(1)∵ND//MB且ND=MB
∴四邊形NDBM為平行四邊形
∴MN//DB………………3分
∴BD平面PBD,MN
∴MN//平面PBD……………………4分
(2)∵QC⊥平面ABCD,BD平面ABCD,
∴BD⊥QC……………………5分
又∵BD⊥AC,
∴BD⊥平面AQC…………………………6分
∵AQ面AQC
∴AQ⊥BD,同理可得AQ⊥PB,
∵BDPD=B
∴AQ⊥面PDB……………………………8分
|