題目列表(包括答案和解析)
已知函數(shù),
.
(Ⅰ)若函數(shù)和函數(shù)
在區(qū)間
上均為增函數(shù),求實數(shù)
的取值范圍;
(Ⅱ)若方程有唯一解,求實數(shù)
的值.
【解析】第一問,
當(dāng)0<x<2時,,當(dāng)x>2時,
,
要使在(a,a+1)上遞增,必須
如使在(a,a+1)上遞增,必須
,即
由上得出,當(dāng)時
,
在
上均為增函數(shù)
(Ⅱ)中方程有唯一解
有唯一解
設(shè) (x>0)
隨x變化如下表
x |
|
|
|
|
- |
|
+ |
|
|
極小值 |
|
由于在上,
只有一個極小值,
的最小值為-24-16ln2,
當(dāng)m=-24-16ln2時,方程有唯一解得到結(jié)論。
(Ⅰ)解:
當(dāng)0<x<2時,,當(dāng)x>2時,
,
要使在(a,a+1)上遞增,必須
如使在(a,a+1)上遞增,必須
,即
由上得出,當(dāng)時
,
在
上均為增函數(shù) ……………6分
(Ⅱ)方程有唯一解
有唯一解
設(shè) (x>0)
隨x變化如下表
x |
|
|
|
|
- |
|
+ |
|
|
極小值 |
|
由于在上,
只有一個極小值,
的最小值為-24-16ln2,
當(dāng)m=-24-16ln2時,方程有唯一解
已知函數(shù)在
取得極值
(1)求的單調(diào)區(qū)間(用
表示);
(2)設(shè),
,若存在
,使得
成立,求
的取值范圍.
【解析】第一問利用
根據(jù)題意在
取得極值,
對參數(shù)a分情況討論,可知
當(dāng)即
時遞增區(qū)間:
遞減區(qū)間:
,
當(dāng)即
時遞增區(qū)間:
遞減區(qū)間:
,
第二問中, 由(1)知:
在
,
,
在
從而求解。
解:
…..3分
在
取得極值,
……………………..4分
(1) 當(dāng)即
時 遞增區(qū)間:
遞減區(qū)間:
,
當(dāng)即
時遞增區(qū)間:
遞減區(qū)間:
,
………….6分
(2) 由(1)知:
在
,
,
在
……………….10分
, 使
成立
得:
已知數(shù)列滿足
(I)求數(shù)列
的通項公式;
(II)若數(shù)列中
,前
項和為
,且
證明:
【解析】第一問中,利用,
∴數(shù)列{}是以首項a1+1,公比為2的等比數(shù)列,即
第二問中,
進一步得到得 即
即是等差數(shù)列.
然后結(jié)合公式求解。
解:(I) 解法二、,
∴數(shù)列{}是以首項a1+1,公比為2的等比數(shù)列,即
(II)
………②
由②可得: …………③
③-②,得 即
…………④
又由④可得 …………⑤
⑤-④得
即是等差數(shù)列.
函數(shù)在同一個周期內(nèi),當(dāng)
時,
取最大值1,當(dāng)
時,
取最小值
。
(1)求函數(shù)的解析式
(2)函數(shù)的圖象經(jīng)過怎樣的變換可得到
的圖象?
(3)若函數(shù)滿足方程
求在
內(nèi)的所有實數(shù)根之和.
【解析】第一問中利用
又因
又
函數(shù)
第二問中,利用的圖象向右平移
個單位得
的圖象
再由圖象上所有點的橫坐標(biāo)變?yōu)樵瓉淼?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070911025203078536/SYS201207091103422182387233_ST.files/image020.png">.縱坐標(biāo)不變,得到
的圖象,
第三問中,利用三角函數(shù)的對稱性,的周期為
在
內(nèi)恰有3個周期,
并且方程在
內(nèi)有6個實根且
同理,可得結(jié)論。
解:(1)
又因
又
函數(shù)
(2)的圖象向右平移
個單位得
的圖象
再由圖象上所有點的橫坐標(biāo)變?yōu)樵瓉淼?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070911025203078536/SYS201207091103422182387233_ST.files/image020.png">.縱坐標(biāo)不變,得到
的圖象,
(3)的周期為
在
內(nèi)恰有3個周期,
并且方程在
內(nèi)有6個實根且
同理,
故所有實數(shù)之和為
1.D
2.C 提示:畫出滿足條件A∪B=A∪C的文氏圖,可知有五種情況,以觀察其中一種,如圖,顯然只要圖中陰影部分相等,B、C未必要相等,條件A∪B=A∪C仍可滿足,對照四個選擇支,A、B、D均可排除,故選C.
3.D
4.B 提示:由題意知,M,
N,因此,
(
),又A∩B=
,故集合A、B的子集中沒有相同的集合,可知M、N中沒有其他的公共元素,故正確的答案是M∩N=
.
5.A 提示:由得
,當(dāng)
時,△
,
得,當(dāng)
時,△
,且
,即
所以
6.A 7.D 8.A
9.D提示:設(shè)3x2-4x-32<0的一個必要不充分條件是為Q,P=.由題意知:P能推出Q,但Q不能推出P.也可理解為:P
Q.
10.A 11.B
12.D 提示:由,又因為
是
的充分而不必要條件,所以
,即
?芍狝=
或方程
的兩根要在區(qū)間[1,2]內(nèi),也即以下兩種情況:
(1);
(2)
;綜合(1)、(2)可得
。
二、填空題
13.3 14.
w.w.w.k.s.5.u.c.o.m
15. -2≤x≤6 提示:由[x]2-3[x]-10≤0得-2≤[x] ≤5,則-2≤x≤6. 16. ①④
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com