8天堂资源在线,国产成人久久av免费高潮,国产精品亚洲综合色区韩国,国产欧美va天堂在线观看视频,xx色综合

22.如圖.已知橢圓的中心在原點(diǎn).焦點(diǎn)在x軸上.長(zhǎng)軸長(zhǎng)是短軸長(zhǎng)的2倍且經(jīng)過(guò)點(diǎn)M(2.1).平行于OM的直線l在y軸上的截距為m.l交橢圓于A.B兩個(gè)不同點(diǎn). (1)求橢圓的方程, (2)求m的取值范圍, (3)求證直線MA.MB與x軸始終圍成一個(gè)等腰三角形. 查看更多

 

題目列表(包括答案和解析)

(本小題滿分12分)如圖,已知橢圓C,經(jīng)過(guò)橢圓C的右焦點(diǎn)F且斜率為kk≠0)的直線l交橢圓C于A、B兩點(diǎn),M為線段AB的中點(diǎn),設(shè)O為橢圓的中心,射線OM交橢圓于N點(diǎn).(1)是否存在k,使對(duì)任意m>0,總有成立?若存在,求出所有k的值;

       (2)若,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

(本小題滿分12分)

如圖,已知橢圓的離心率為,以該橢圓上的點(diǎn)和橢圓的左、右焦點(diǎn)為頂點(diǎn)的三角形的周長(zhǎng)為.一等軸雙曲線的頂點(diǎn)是該橢圓的焦點(diǎn),設(shè)為該雙曲線上異于頂點(diǎn)的任一點(diǎn),直線與橢圓的交點(diǎn)分別為.

(Ⅰ)求橢圓和雙曲線的標(biāo)準(zhǔn)方程;

(Ⅱ)設(shè)直線的斜率分別為、,證明;

(Ⅲ)是否存在常數(shù),使得恒成立?若存在,求的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

(本小題滿分12分)

如圖,已知橢圓的離心率為,以該橢圓上的點(diǎn)和橢圓的左、右焦點(diǎn)為頂點(diǎn)的三角形的周長(zhǎng)為.一等軸雙曲線的頂點(diǎn)是該橢圓的焦點(diǎn),設(shè)為該雙曲線上異于頂點(diǎn)的任一點(diǎn),直線與橢圓的交點(diǎn)分別為.

(Ⅰ)求橢圓和雙曲線的標(biāo)準(zhǔn)方程;

(Ⅱ)設(shè)直線、的斜率分別為、,證明;

(Ⅲ)是否存在常數(shù),使得恒成立?若存在,求的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

(本小題滿分12分)

如圖,已知橢圓過(guò)點(diǎn),兩個(gè)焦點(diǎn)分別為,為坐標(biāo)原點(diǎn),平行于的直線交橢圓于不同的兩點(diǎn),

(Ⅰ)求橢圓的方程;

(Ⅱ)試問(wèn)直線的斜率之和是否為定值,若為定值,求出以線段為直徑且過(guò)點(diǎn)的圓的方程;若不存在,說(shuō)明理由.

查看答案和解析>>

(本小題滿分12分)

如圖,已知橢圓C1的中心在原點(diǎn)O,長(zhǎng)軸左、右端點(diǎn)M,Nx軸上,橢圓C2的短軸為MN,且C1,C2的離心率都為e,直線l⊥MN,lC1交于兩點(diǎn),與C2交于兩點(diǎn),這四點(diǎn)按縱坐標(biāo)從大到小依次為A,B,C,D
(I)設(shè),求的比值;
(II)當(dāng)e變化時(shí),是否存在直線l,使得BOAN,并說(shuō)明理由.

查看答案和解析>>

 

一、選擇題(每小題5分,共12小題,滿分60分)

<pre id="oi9kp"><dfn id="oi9kp"></dfn></pre>
    <s id="oi9kp"></s>

      2,4,6

      二、填空題(每小題4分,共4小題,滿分16分)

      13.     14.84      15.

      16.

      三、解答題

      17.解:(1)…………………………2分

      (2)由題意,令

      ∴從晚上1點(diǎn)至5點(diǎn),或上午13點(diǎn)至17點(diǎn),為所求時(shí)間,共8小時(shí),……12分

      18.解:由框圖可知

       

      (1)由題意可知,k=5時(shí),

      (3)由(2)可得:

      19.證明:(1)連結(jié)AC、BD、A1C1則AC、BD的交點(diǎn),O1

        ∴四邊形ACC1A1為平行四邊形,

        ∴四邊形A1O1CO為平行四邊形…………2分

        ∴A1O//CO1

        ∵A1O⊥平面ABCD

        ∴O1C⊥平面ABCD…………………………4分

        ∵O1C平面O1DC

        ∴存在點(diǎn)平面O1DC⊥平面ABCD……………5分

        (2)F為BC的三等分點(diǎn)B(靠近B)時(shí),有EF⊥BC……………………6分

        過(guò)點(diǎn)E作EH⊥AC于H,連FH、EF//A1O

        ∵平面A1AO⊥平面ABCD

        ∴EH⊥平面ABCD

        又BC平面ABCD   ∴BC⊥EH ①

        ∴HF//AB     ∴HF⊥BC, ②

        由①②知,BC⊥平面EFH

        ∵EF平面EFH    ∴EF⊥BC…………………………12分

        20.解:(1)當(dāng)0<x≤10時(shí),

        (2)①當(dāng)0<x≤10時(shí),

        ②當(dāng)x>10時(shí),

        (萬(wàn)元)

        (當(dāng)且僅當(dāng)時(shí)取等號(hào))……………………………………………………10分

        綜合①②知:當(dāng)x=9時(shí),y取最大值………………………………………………11分

        故當(dāng)年產(chǎn)量為9萬(wàn)件時(shí),服裝廠在這一品牌服裝的生產(chǎn)中獲年利潤(rùn)最大…………12分

        21.解:(1)

        又x1,x2是函數(shù)f(x)的兩個(gè)極值點(diǎn),則x1,x2的兩根,

        (2)由題意,

        22.解:(1)設(shè)橢圓方程為………………………………1分

        ………………………………………………3分

        ∴橢圓方程為…………………………………………………………4分

        (2)∵直線l平行于OM,且在y軸上的截距為m

        又KOM=

        ……………………………………………………5分

        ……………………………………6分

        ∵直線l與橢圓交于A、B兩個(gè)不同點(diǎn),

        (3)設(shè)直線MA、MB的斜率分別為k1,k2,只需證明k1+k2=0即可…………9分

        設(shè)……………………10分

        ……………………………………………………10分

        故直線MA、MB與x軸始終圍成一個(gè)等腰三角形.……………………14分

         

         

         

        <menuitem id="oi9kp"></menuitem>