8天堂资源在线,国产成人久久av免费高潮,国产精品亚洲综合色区韩国,国产欧美va天堂在线观看视频,xx色综合

(1)求證:平面O1DC⊥平面ABCD, (2)若點E在棱AA1上.且AE=2EA1.問在棱BC上是否存在點F.使得EF⊥BC?若存在.求出其位置,若不存在.說明理由. 查看更多

 

題目列表(包括答案和解析)

精英家教網(wǎng)如圖:已知四棱柱ABCD-A1B1C1D1的底面是正方形,O1、O分別是上、下底面的中心,A1O⊥平面ABCD.
(1)求證:平面O1DC⊥平面ABCD;
(2)若點E在棱AA1上,且AE=2EA1,問在棱BC上是否存在點F,使得EF⊥BC?若存在,求出其位置;若不存在,說明理由.

查看答案和解析>>

如圖:已知四棱柱ABCD-A1B1C1D1的底面是正方形,O1、O分別是上、下底面的中心,A1O⊥平面ABCD.
(1)求證:平面O1DC⊥平面ABCD;
(2)若點E在棱AA1上,且AE=2EA1,問在棱BC上是否存在點F,使得EF⊥BC?若存在,求出其位置;若不存在,說明理由.

查看答案和解析>>

如圖:已知四棱柱ABCD-A1B1C1D1的底面是正方形,O1、O分別是上、下底面的中心,A1O⊥平面ABCD.
(1)求證:平面O1DC⊥平面ABCD;
(2)若點E在棱AA1上,且AE=2EA1,問在棱BC上是否存在點F,使得EF⊥BC?若存在,求出其位置;若不存在,說明理由.

查看答案和解析>>

如圖:已知四棱柱ABCD-A1B1C1D1的底面是正方形,O1、O分別是上、下底面的中心,A1O⊥平面ABCD.
(1)求證:平面O1DC⊥平面ABCD;
(2)若點E在棱AA1上,且AE=2EA1,問在棱BC上是否存在點F,使得EF⊥BC?若存在,求出其位置;若不存在,說明理由.

查看答案和解析>>

如圖,已知平行六面體ABC-A1B1C1的底面為正方形,O1,O分別為上、下底面中心,且A1在底面ABCD上的射影為O.
(1)求證:平面O1DC⊥平面ABCD;
(2)若點E、F分別在棱AA1、BC上,且AE=2EA1,問F在何處時,EF⊥AD?

查看答案和解析>>

 

一、選擇題(每小題5分,共12小題,滿分60分)

2,4,6

二、填空題(每小題4分,共4小題,滿分16分)

13.     14.84      15.

16.

三、解答題

17.解:(1)…………………………2分

(2)由題意,令

∴從晚上1點至5點,或上午13點至17點,為所求時間,共8小時,……12分

18.解:由框圖可知

 

(1)由題意可知,k=5時,

(3)由(2)可得:

19.證明:(1)連結(jié)AC、BD、A1C1則AC、BD的交點,O1

<cite id="88o8k"><li id="88o8k"></li></cite>
  • <blockquote id="88o8k"></blockquote>

  • <sub id="88o8k"><p id="88o8k"></p></sub>
    • ∴四邊形ACC1A1為平行四邊形,

      ∴四邊形A1O1CO為平行四邊形…………2分

      ∴A1O//CO1

      ∵A1O⊥平面ABCD

      ∴O1C⊥平面ABCD…………………………4分

      ∵O1C平面O1DC

      ∴存在點平面O1DC⊥平面ABCD……………5分

      (2)F為BC的三等分點B(靠近B)時,有EF⊥BC……………………6分

      過點E作EH⊥AC于H,連FH、EF//A1O

      ∵平面A1AO⊥平面ABCD

      ∴EH⊥平面ABCD

      又BC平面ABCD   ∴BC⊥EH ①

      ∴HF//AB     ∴HF⊥BC, ②

      由①②知,BC⊥平面EFH

      ∵EF平面EFH    ∴EF⊥BC…………………………12分

      20.解:(1)當0<x≤10時,

      (2)①當0<x≤10時,

      ②當x>10時,

      (萬元)

      (當且僅當時取等號)……………………………………………………10分

      綜合①②知:當x=9時,y取最大值………………………………………………11分

      故當年產(chǎn)量為9萬件時,服裝廠在這一品牌服裝的生產(chǎn)中獲年利潤最大…………12分

      21.解:(1)

      又x1,x2是函數(shù)f(x)的兩個極值點,則x1,x2的兩根,

      (2)由題意,

      22.解:(1)設橢圓方程為………………………………1分

      ………………………………………………3分

      ∴橢圓方程為…………………………………………………………4分

      (2)∵直線l平行于OM,且在y軸上的截距為m

      又KOM=

      ……………………………………………………5分

      ……………………………………6分

      ∵直線l與橢圓交于A、B兩個不同點,

      (3)設直線MA、MB的斜率分別為k1,k2,只需證明k1+k2=0即可…………9分

      ……………………10分

      ……………………………………………………10分

      故直線MA、MB與x軸始終圍成一個等腰三角形.……………………14分