8天堂资源在线,国产成人久久av免费高潮,国产精品亚洲综合色区韩国,国产欧美va天堂在线观看视频,xx色综合

D. 第Ⅱ卷 查看更多

 

題目列表(包括答案和解析)

已知均為正數(shù),,則的最小值是            (    )

         A.            B.           C.             D.

第Ⅱ卷  (非選擇題  共90分)

二、填空題:本大題共4小題,每小題4分,共16分,將答案填在題中的橫線上。

查看答案和解析>>

正項數(shù)列的前n項的乘積,則數(shù)列的前n項和中的最大值是                (    )

       A.    B.    C.    D.

第Ⅱ卷(非選擇題,共90分)

查看答案和解析>>

 是定義在R上的偶函數(shù),且在上為增函數(shù),、是銳角三角形的兩個內(nèi)角,則( 。

A.       B.

C.        D.

第Ⅱ卷(非選擇題,共90分)

 

查看答案和解析>>

若函數(shù)在區(qū)間[a,b]上的圖象為連續(xù)不斷的一條曲線,則下列說法正確的是(    )

A.若,不存在實數(shù)使得;

B.若,存在且只存在一個實數(shù)使得;            

C.若,有可能存在實數(shù)使得  

D.若,有可能不存在實數(shù)使得

    第Ⅱ卷(非選擇題 共90分)

 

查看答案和解析>>

若函數(shù)在區(qū)間[a,b]上的圖象為連續(xù)不斷的一條曲線,則下列說法正確的是(   )
A.若,不存在實數(shù)使得;
B.若,存在且只存在一個實數(shù)使得;
C.若,有可能存在實數(shù)使得;
D.若,有可能不存在實數(shù)使得
第Ⅱ卷(非選擇題 共90分)

查看答案和解析>>

一、選擇題

  1. <legend id="0t61a"><track id="0t61a"></track></legend>

    20080422

    二、填空題

    13.2    14.3   15.   16.①③④

    三、解答題

    17.解:(1)……………………3分

    ……………………6分

    (2)因為

    ………………9分

    ……………………12分

    文本框:  18.方法一:

    (1)證明:連結(jié)BD,

    ∵D分別是AC的中點,PA=PC=

    ∴PD⊥AC,

    ∵AC=2,AB=,BC=

    ∴AB2+BC2=AC2

    ∴∠ABC=90°,即AB⊥BC.…………2分

    ∴BD=,

    ∵PD2=PA2―AD2=3,PB

    ∴PD2+BD2=PB2,

    ∴PD⊥BD,

    ∵ACBD=D

    ∴PD⊥平面ABC.…………………………4分

    (2)解:取AB的中點E,連結(jié)DE、PE,由E為AB的中點知DE//BC,

    ∵AB⊥BC,

    ∴AB⊥DE,

    ∵DE是直線PE的底面ABC上的射景

    ∴PE⊥AB

    ∴∠PED是二面角P―AB―C的平面角,……………………6分

    在△PED中,DE=∠=90°,

    ∴tan∠PDE=

    ∴二面角P―AB―C的大小是

    (3)解:設(shè)點E到平面PBC的距離為h.

    ∵VP―EBC=VE―PBC

    ……………………10分

    在△PBC中,PB=PC=,BC=

    而PD=

    ∴點E到平面PBC的距離為……………………12分

    方法二:

    (1)同方法一:

    (2)解:解:取AB的中點E,連結(jié)DE、PE,

    過點D作AB的平行線交BC于點F,以D為

      • <sub id="0t61a"></sub>

        DP為z軸,建立如圖所示的空間直角坐標(biāo)系.

        則D(0,0,0),P(0,0,),

        E(),B=(

        設(shè)上平面PAB的一個法向量,

        則由

        這時,……………………6分

        顯然,是平面ABC的一個法向量.

        ∴二面角P―AB―C的大小是……………………8分

        (3)解:

        設(shè)平面PBC的一個法向量,

        是平面PBC的一個法向量……………………10分

        ∴點E到平面PBC的距離為………………12分

        19.解:(1)由題設(shè),當(dāng)價格上漲x%時,銷售總金額為:

           (2)

        ……………………3分

        當(dāng)

        當(dāng)x=50時,

        即該噸產(chǎn)品每噸的價格上漲50%時,銷售總最大.……………………6分

        (2)由(1)

        如果上漲價格能使銷假售總金額增加,

        則有……………………8分

        即x>0時,

        注意到m>0

          ∴   ∴

        ∴m的取值范圍是(0,1)…………………………12分

        20.解(1)由已知,拋物線,焦點F的坐標(biāo)為F(0,1)………………1分

        當(dāng)l與y軸重合時,顯然符合條件,此時……………………3分

        當(dāng)l不與y軸重合時,要使拋物線的焦點F與原點O到直線l的距離相等,當(dāng)且僅當(dāng)直線l通過點()設(shè)l的斜率為k,則直線l的方程為

        由已知可得………5分

        解得無意義.

        因此,只有時,拋物線的焦點F與原點O到直線l的距離相等.……7分

        (2)由已知可設(shè)直線l的方程為……………………8分

        則AB所在直線為……………………9分

        代入拋物線方程………………①

        的中點為

        代入直線l的方程得:………………10分

        又∵對于①式有:

        解得m>-1,

        l在y軸上截距的取值范圍為(3,+)……………………12分

        21.解:(1)在………………1分

        當(dāng)兩式相減得:

        整理得:……………………3分

        當(dāng)時,,滿足上式,

        (2)由(1)知

        ………………8分

        ……………………10分

        …………………………12分

        22.解:(1)…………………………1分

        是R上的增函數(shù),故在R上恒成立,

        在R上恒成立,……………………2分

        …………3分

        故函數(shù)上單調(diào)遞減,在(-1,1)上單調(diào)遞增,在(1,+)上單調(diào)遞減!5分

        ∴當(dāng)

        的最小值………………6分

        亦是R上的增函數(shù)。

        故知a的取值范圍是……………………7分

        (2)……………………8分

        ①當(dāng)a=0時,上單調(diào)遞增;…………10分

        可知

        ②當(dāng)

        即函數(shù)上單調(diào)遞增;………………12分

        ③當(dāng)時,有,

        即函數(shù)上單調(diào)遞增!14分