題目列表(包括答案和解析)
利用導數(shù),可以判斷函數(shù)在下列哪個區(qū)間內(nèi)是增函數(shù)( )
A. B.
C. D.
利用導數(shù),可以判斷函數(shù)在下列哪個區(qū)間內(nèi)是增函數(shù)( )
A. B.
C. D.
已知函數(shù)其中a>0.
(I)求函數(shù)f(x)的單調(diào)區(qū)間;
(II)若函數(shù)f(x)在區(qū)間(-2,0)內(nèi)恰有兩個零點,求a的取值范圍;
(III)當a=1時,設函數(shù)f(x)在區(qū)間[t,t+3]上的最大值為M(t),最小值為m(t),記g(t)=M(t)-m(t),求函數(shù)g(t)在區(qū)間[-3,-1]上的最小值。
【考點定位】本小題主要考查導數(shù)的運算,利用導數(shù)研究函數(shù)的單調(diào)性、函數(shù)的零點,函數(shù)的最值等基礎(chǔ)知識.考查函數(shù)思想、分類討論思想.考查綜合分析和解決問題的能力.
已知R,函數(shù)
.
⑴若函數(shù)沒有零點,求實數(shù)
的取值范圍;
⑵若函數(shù)存在極大值,并記為
,求
的表達式;
⑶當時,求證:
.
【解析】(1)求導研究函數(shù)f(x)的最值,說明函數(shù)f(x)的最大值<0,或f(x)的最小值>0.
(2)根據(jù)第(1)問的求解過程,直接得到g(m).
(3)構(gòu)造函數(shù),證明
即可,然后利用導數(shù)求g(x)的最小值.
已知函數(shù),
.
(Ⅰ)若函數(shù)依次在
處取到極值.求
的取值范圍;
(Ⅱ)若存在實數(shù),使對任意的
,不等式
恒成立.求正整數(shù)
的最大值.
【解析】第一問中利用導數(shù)在在處取到極值點可知導數(shù)為零可以解得方程有三個不同的實數(shù)根來分析求解。
第二問中,利用存在實數(shù),使對任意的
,不等式
恒成立轉(zhuǎn)化為
,恒成立,分離參數(shù)法求解得到范圍。
解:(1)
①
(2)不等式 ,即
,即
.
轉(zhuǎn)化為存在實數(shù),使對任意的
,不等式
恒成立.
即不等式在
上恒成立.
即不等式在
上恒成立.
設,則.
設,則
,因為
,有
.
故在區(qū)間
上是減函數(shù)。又
故存在,使得
.
當時,有
,當
時,有
.
從而在區(qū)間
上遞增,在區(qū)間
上遞減.
又[來源:]
所以當時,恒有
;當
時,恒有
;
故使命題成立的正整數(shù)m的最大值為5
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com