題目列表(包括答案和解析)
已知數(shù)列是各項(xiàng)均不為0的等差數(shù)列,公差為d,
為其前n項(xiàng)和,且滿足
,
.?dāng)?shù)列
滿足
,
,
為數(shù)列
的前n項(xiàng)和.
(1)求數(shù)列的通項(xiàng)公式
和數(shù)列
的前n項(xiàng)和
;
(2)若對(duì)任意的,不等式
恒成立,求實(shí)數(shù)
的取值范圍;
(3)是否存在正整數(shù),使得
成等比數(shù)列?若存在,求出所有
的值;若不存在,請(qǐng)說(shuō)明理由.
【解析】第一問(wèn)利用在中,令n=1,n=2,
得 即
解得,,
[
又時(shí),
滿足
,
,
第二問(wèn),①當(dāng)n為偶數(shù)時(shí),要使不等式恒成立,即需不等式
恒成立.
,等號(hào)在n=2時(shí)取得.
此時(shí)
需滿足
.
②當(dāng)n為奇數(shù)時(shí),要使不等式恒成立,即需不等式
恒成立.
是隨n的增大而增大, n=1時(shí)
取得最小值-6.
此時(shí)
需滿足
.
第三問(wèn),
若成等比數(shù)列,則
,
即.
由,可得
,即
,
.
(1)(法一)在中,令n=1,n=2,
得 即
解得,,
[
又時(shí),
滿足
,
,
.
(2)①當(dāng)n為偶數(shù)時(shí),要使不等式恒成立,即需不等式
恒成立.
,等號(hào)在n=2時(shí)取得.
此時(shí)
需滿足
.
②當(dāng)n為奇數(shù)時(shí),要使不等式恒成立,即需不等式
恒成立.
是隨n的增大而增大, n=1時(shí)
取得最小值-6.
此時(shí)
需滿足
.
綜合①、②可得的取值范圍是
.
(3),
若成等比數(shù)列,則
,
即.
由,可得
,即
,
.
又,且m>1,所以m=2,此時(shí)n=12.
因此,當(dāng)且僅當(dāng)m=2,
n=12時(shí),數(shù)列中的
成等比數(shù)列
已知函數(shù),
(1)求函數(shù)的定義域;
(2)求函數(shù)在區(qū)間
上的最小值;
(3)已知,命題p:關(guān)于x的不等式
對(duì)函數(shù)
的定義域上的任意
恒成立;命題q:指數(shù)函數(shù)
是增函數(shù).若“p或q”為真,“p且q”為假,求實(shí)數(shù)m的取值范圍.
【解析】第一問(wèn)中,利用由 即
第二問(wèn)中,,
得:
,
第三問(wèn)中,由在函數(shù)的定義域上
的任意
,
,當(dāng)且僅當(dāng)
時(shí)等號(hào)成立。當(dāng)命題p為真時(shí),
;而命題q為真時(shí):指數(shù)函數(shù)
.因?yàn)椤皃或q”為真,“p且q”為假,所以
當(dāng)命題p為真,命題q為假時(shí);當(dāng)命題p為假,命題q為真時(shí)分為兩種情況討論即可 。
解:(1)由 即
(2),
得:
,
(3)由在函數(shù)的定義域上
的任意
,
,當(dāng)且僅當(dāng)
時(shí)等號(hào)成立。當(dāng)命題p為真時(shí),
;而命題q為真時(shí):指數(shù)函數(shù)
.因?yàn)椤皃或q”為真,“p且q”為假,所以
當(dāng)命題p為真,命題q為假時(shí),
當(dāng)命題p為假,命題q為真時(shí),,
所以
已知函數(shù);
(1)若函數(shù)在其定義域內(nèi)為單調(diào)遞增函數(shù),求實(shí)數(shù)
的取值范圍。
(2)若函數(shù),若在[1,e]上至少存在一個(gè)x的值使
成立,求實(shí)數(shù)
的取值范圍。
【解析】第一問(wèn)中,利用導(dǎo)數(shù),因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070911301664012899/SYS201207091131067338626240_ST.files/image003.png">在其定義域內(nèi)的單調(diào)遞增函數(shù),所以
內(nèi)滿足
恒成立,得到結(jié)論第二問(wèn)中,在[1,e]上至少存在一個(gè)x的值使
成立,等價(jià)于不等式
在[1,e]上有解,轉(zhuǎn)換為不等式有解來(lái)解答即可。
解:(1),
因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070911301664012899/SYS201207091131067338626240_ST.files/image003.png">在其定義域內(nèi)的單調(diào)遞增函數(shù),
所以 內(nèi)滿足
恒成立,即
恒成立,
亦即,
即可 又
當(dāng)且僅當(dāng),即x=1時(shí)取等號(hào),
在其定義域內(nèi)為單調(diào)增函數(shù)的實(shí)數(shù)k的取值范圍是
.
(2)在[1,e]上至少存在一個(gè)x的值使成立,等價(jià)于不等式
在[1,e]上有解,設(shè)
上的增函數(shù),
依題意需
實(shí)數(shù)k的取值范圍是
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com