題目列表(包括答案和解析)
在平面直角坐標(biāo)系xOy中,以O(shè)為極點,X軸的正半軸為極軸,取與直角坐標(biāo)系相同的長度單位建立極坐標(biāo)系.曲線C1的參數(shù)方程為:(
為參數(shù));射線C2的極坐標(biāo)方程為:
,且射線C2與曲線C1的交點的橫坐標(biāo)為
(I )求曲線C1的普通方程;
(II)設(shè)A、B為曲線C1與y軸的兩個交點,M為曲線C1上不同于A、B的任意一點,若直線AM與MB分別與x軸交于P,Q兩點,求證|OP|.|OQ|為定值.
在復(fù)平面內(nèi), 是原點,向量
對應(yīng)的復(fù)數(shù)是
,
=2+i。
(Ⅰ)如果點A關(guān)于實軸的對稱點為點B,求向量對應(yīng)的復(fù)數(shù)
和
;
(Ⅱ)復(fù)數(shù),
對應(yīng)的點C,D。試判斷A、B、C、D四點是否在同一個圓上?并證明你的結(jié)論。
【解析】第一問中利用復(fù)數(shù)的概念可知得到由題意得,A(2,1) ∴B(2,-1)
∴ =(0,-2)
∴
=-2i ∵
(2+i)(-2i)=2-4i,
∴
=
第二問中,由題意得,=(2,1)
∴
同理,所以A、B、C、D四點到原點O的距離相等,
∴A、B、C、D四點在以O(shè)為圓心,為半徑的圓上
(Ⅰ)由題意得,A(2,1) ∴B(2,-1)
∴ =(0,-2)
∴
=-2i 3分
∵ (2+i)(-2i)=2-4i,
∴
=
2分
(Ⅱ)A、B、C、D四點在同一個圓上。 2分
證明:由題意得,=(2,1)
∴
同理,所以A、B、C、D四點到原點O的距離相等,
∴A、B、C、D四點在以O(shè)為圓心,為半徑的圓上
一、選擇題:本大題共10小題,每小題5分,共50分。
1.B 2.D 3.A 4.A 5.B 6.C 7.C 8.C 9.A 10.B
二、填空題:本大題共5小題,每小題4分,共20分。
11.5 12. 13.
14.7 15.
三、解答題:本大題共6小題,共80分。
16.解:(I)由三角函數(shù)的定義可知
又為正三角形,
(Ⅱ)
圓的面積為。
該點落在
內(nèi)的概率
17.解:(I)依題意,每個月更新的車輛數(shù)構(gòu)成一個首項為,公差為
的等差數(shù)列,設(shè)第
個月更新的車輛數(shù)為
,則
該市的出租車總數(shù)
(輛)
(Ⅱ)依題意,每個月更新的車輛數(shù)構(gòu)成一個首項為,公比為1.1的等比數(shù)列,則第
個月更新的車輛數(shù),設(shè)至少需要
個月才能更新完畢,
個月更新的車輛總數(shù)
,
即,由參數(shù)數(shù)據(jù)可得
故以此速度進行更新,至少需要37個月才能更新完該市所有的出租車
18.解(I),
為等腰直角三角形,
(Ⅱ)如圖建立空間直角坐標(biāo)系,則
設(shè)平面
的一個法向量為
,
則有 得
平面
的一個法向量
而的一個法向量
平面
與平面
所成的角的余弦值
(Ⅲ),
設(shè)平面的法向量為
,則有
平面
的一個法向量為
若要使得面
,則要
,即
解得,
當(dāng)
時,
面
19.解法一:
(I)設(shè)橢圓方程為,由題意知
故橢圓方程為
(Ⅱ)由(I)得,所以
,設(shè)
的方程為
(
)
代入,得
設(shè)則
由,
當(dāng)
時,有
成立。
(Ⅲ)在軸上存在定點
,使得
、
、
三點共線。
依題意知,直線BC的方程為
,
令,則
的方程為
、
在直線
上,
在
軸上存在定點
,使得
、
、
三點共線。
解法二:(I)同解法一。
(Ⅱ)由(I)得,所以
。
設(shè)的方程為
代入,得
設(shè)則
當(dāng)
時,有
成立。
(Ⅲ)在軸上存在定點
,使得
、
、
三點共線。
設(shè)存在使得
、
、
三點共線,則
,
,
即
,
。
所以,存在,使得
、
、
三點共線。
20.解:(I)
當(dāng)時,
由或
。
x
(0,1)
1
+
―
單調(diào)遞增
極大值
單調(diào)遞減
時,
,無極小值。
(Ⅱ)存在單調(diào)遞減區(qū)間,
在
內(nèi)有解,即
在
內(nèi)有解。
若,則
,
在
單調(diào)遞增,不存在單調(diào)遞減區(qū)間;
若,則函數(shù)
的圖象是開口向上的拋物線,且恒過點(0,1),要
使在
內(nèi)有解,則應(yīng)有
或
,由于
,
;
若,則函數(shù)
的圖象是開口向下的拋物線,且恒過點(0,1),
在
內(nèi)一定有解。
綜上,或
。
(Ⅲ)依題意:,假設(shè)結(jié)論不成立,
則有
①―②,得
由③得,
即
設(shè),則
,
令
,
在(0,1)上為增函數(shù)。
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com