8天堂资源在线,国产成人久久av免费高潮,国产精品亚洲综合色区韩国,国产欧美va天堂在线观看视频,xx色综合

(I)求的單調遞增區(qū)間, 查看更多

 

題目列表(包括答案和解析)

已知函數 (I)求的單調遞增區(qū)間;(II)在中,三內角的對邊分別為,已知,成等差數列,且,求的值.

 

查看答案和解析>>

已知函數 (I)求的單調遞增區(qū)間;

(II)在中,三內角的對邊分別為,已知,成等差數列,且,求的值.

 

查看答案和解析>>

已知函數 (I)求的單調遞增區(qū)間;
(II)在中,三內角的對邊分別為,已知成等差數列,且,求的值.

查看答案和解析>>

已知函數的單調遞增區(qū)間是,單調遞減區(qū)間是[-2,2]。

(I)求函數的解析式;

(II)若的圖象與直線有三個公共點,求m的取值范圍。

查看答案和解析>>

設函數

(I)求的單調區(qū)間;

(II)當0<a<2時,求函數在區(qū)間上的最小值.

【解析】第一問定義域為真數大于零,得到.                            

,則,所以,得到結論。

第二問中, ().

.                          

因為0<a<2,所以,.令 可得

對參數討論的得到最值。

所以函數上為減函數,在上為增函數.

(I)定義域為.           ………………………1分

.                            

,則,所以.  ……………………3分          

因為定義域為,所以.                            

,則,所以

因為定義域為,所以.          ………………………5分

所以函數的單調遞增區(qū)間為

單調遞減區(qū)間為.                         ………………………7分

(II) ().

.                          

因為0<a<2,所以.令 可得.…………9分

所以函數上為減函數,在上為增函數.

①當,即時,            

在區(qū)間上,上為減函數,在上為增函數.

所以.         ………………………10分  

②當,即時,在區(qū)間上為減函數.

所以.               

綜上所述,當時,;

時,

 

查看答案和解析>>

一、選擇題:本大題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。

題號

1

2

3

4

5

6

7

8

9

10

11

12

答案

B

B

D

D

C

A

C

B

A

C

C

C

二、填空題:本大題共4小題,每小題4分,共16分。把答案填在題中橫線上。

13.13     14.       15.2           16.1005

三、解答題:本大題共6小題,共74分。解答應寫出文字說明,證明過程或演算步驟。

17.(本小題滿分12分)

解(I)

      

  (Ⅱ)由

        

18.(本小題滿分12分)

解(I)記事件A;射手甲剩下3顆子彈,

      

(Ⅱ)記事件甲命中1次10環(huán),乙命中兩次10環(huán),事件;甲命中2次10環(huán),乙命中1次10環(huán),則四次射擊中恰有三次命中10環(huán)為事件

(Ⅲ)的取值分別為16,17,18,19,20,

     

19.(本題滿分12分)

證(Ⅰ)因為側面,故

 在中,   由余弦定理有

  故有 

  而     且平面

     

(Ⅱ)由

從而  且

 不妨設  ,則,則

  則

中有   從而(舍負)

的中點時,

 法二:以為原點軸,設,則       由得    即

      

      化簡整理得       或

     當重合不滿足題意

     當的中點

     故的中點使

 (Ⅲ)取的中點,的中點,的中點,的中點

 連,連,連

 連,且為矩形,

   故為所求二面角的平面角

中,

法二:由已知, 所以二面角的平面角的大小為向量的夾角

因為  

 

20.(本小題滿分12分)

(1)由

        切線的斜率切點坐標(2,5+

        所求切線方程為

   (2)若函數為上單調增函數,

        則上恒成立,即不等式上恒成立

        也即上恒成立。

        令上述問題等價于

        而為在上的減函數,

        則于是為所求

21.(本小題滿分12分)

解:(1),

        ∵直線l:x-y+2=0與圓x2+y2=b2相切,

=b,∴b=,b2=2,∴=3.                                                    

∴橢圓C1的方程是

(2)∵MP=MF,∴動點M到定直線l1:x=-1的距離等于它的定點F2(1,0)的距離,

∴動點M的軌跡是以l1為準線,F2為焦點的拋物線,∴點M的軌跡C2的方程為。

(3)Q(0,0),設,

得  ,

,化簡得,

當且僅當時等號成立,

,又∵y­22≥64,

∴當.    故的取值范圍是.

22.(本小題滿分14分)

解(I)由題意,令

      

 (Ⅱ)

      

  (1)當時,成立:

  (2)假設當時命題成立,即

       當時,

      

 

 

 


同步練習冊答案