題目列表(包括答案和解析)
已知向量(
),向量
,
,
且.
(Ⅰ)求向量;
(Ⅱ)若
,
,求
.
【解析】本試題主要考查了向量的數(shù)量積的運算,以及兩角和差的三角函數(shù)關系式的運用。
(1)問中∵,∴
,…………………1分
∵,得到三角關系是
,結合
,解得。
(2)由,解得
,
,結合二倍角公式
,和
,代入到兩角和的三角函數(shù)關系式中就可以求解得到。
解析一:(Ⅰ)∵,∴
,…………1分
∵,∴
,即
① …………2分
又 ② 由①②聯(lián)立方程解得,
,
5分
∴ ……………6分
(Ⅱ)∵即
,
, …………7分
∴,
………8分
又∵, ………9分
, ……10分
∴.
解法二: (Ⅰ),…………………………………1分
又,∴
,即
,①……2分
又 ②
將①代入②中,可得 ③ …………………4分
將③代入①中,得……………………………………5分
∴ …………………………………6分
(Ⅱ) 方法一
∵,
,∴
,且
……7分
∴,從而
. …………………8分
由(Ⅰ)知,
; ………………9分
∴. ………………………………10分
又∵,∴
,
又
,∴
……11分
綜上可得 ………………………………12分
方法二∵,
,∴
,且
…………7分
∴.
……………8分
由(Ⅰ)知,
.
…………9分
∴
……………10分
∵,且注意到
,
∴,又
,∴
………………………11分
綜上可得 …………………12分
(若用,又∵
∴
,
已知中心在坐標原點,焦點在軸上的橢圓C;其長軸長等于4,離心率為
.
(Ⅰ)求橢圓C的標準方程;
(Ⅱ)若點(0,1), 問是否存在直線
與橢圓
交于
兩點,且
?若存在,求出
的取值范圍,若不存在,請說明理由.
【解析】本試題主要考查了橢圓的方程的求解,直線與橢圓的位置關系的運用。
第一問中,可設橢圓的標準方程為
則由長軸長等于4,即2a=4,所以a=2.又,所以
,
又由于
所求橢圓C的標準方程為
第二問中,
假設存在這樣的直線,設
,MN的中點為
因為|ME|=|NE|所以MNEF所以
(i)其中若時,則K=0,顯然直線
符合題意;
(ii)下面僅考慮情形:
由,得,
,得
代入1,2式中得到范圍。
(Ⅰ) 可設橢圓的標準方程為
則由長軸長等于4,即2a=4,所以a=2.又,所以
,
又由于
所求橢圓C的標準方程為
(Ⅱ) 假設存在這樣的直線,設
,MN的中點為
因為|ME|=|NE|所以MNEF所以
(i)其中若時,則K=0,顯然直線
符合題意;
(ii)下面僅考慮情形:
由,得,
,得
……② ……………………9分
則.
代入①式得,解得………………………………………12分
代入②式得,得
.
綜上(i)(ii)可知,存在這樣的直線,其斜率k的取值范圍是
已知函數(shù)在
處取得極值2.
⑴ 求函數(shù)的解析式;
⑵ 若函數(shù)在區(qū)間
上是單調函數(shù),求實數(shù)m的取值范圍;
【解析】第一問中利用導數(shù)
又f(x)在x=1處取得極值2,所以,
所以
第二問中,
因為,又f(x)的定義域是R,所以由
,得-1<x<1,所以f(x)在[-1,1]上單調遞增,在
上單調遞減,當f(x)在區(qū)間(m,2m+1)上單調遞增,則有
,得
解:⑴ 求導,又f(x)在x=1處取得極值2,所以
,即
,所以
…………6分
⑵ 因為,又f(x)的定義域是R,所以由
,得-1<x<1,所以f(x)在[-1,1]上單調遞增,在
上單調遞減,當f(x)在區(qū)間(m,2m+1)上單調遞增,則有
,得
, …………9分
當f(x)在區(qū)間(m,2m+1)上單調遞減,則有
得
…………12分
.綜上所述,當時,f(x)在(m,2m+1)上單調遞增,當
時,f(x)在(m,2m+1)上單調遞減;則實數(shù)m的取值范圍是
或
(12分) 22.已知四棱錐P-ABCD的底面為直角梯形,AB∥DC,
底面ABCD,PA=AD=DC=AB=1,M是PB的中點
(Ⅰ)證明:面PAD⊥面PCD;
(Ⅱ)求異面直線CM與AD所成角的正切值;
(Ⅲ)求面MAC與面BAC所成二面角的正切值
已知中心在原點O,焦點F1、F2在x軸上的橢圓E經(jīng)過點C(2,2),且拋物線的焦點為F1.
(Ⅰ)求橢圓E的方程;
(Ⅱ)垂直于OC的直線l與橢圓E交于A、B兩點,當以AB為直徑的圓P與y軸相切時,求直線l的方程和圓P的方程.
【解析】本試題主要考查了橢圓的方程的求解以及直線與橢圓的位置關系的運用。第一問中,設出橢圓的方程,然后結合拋物線的焦點坐標得到,又因為
,這樣可知得到
。第二問中設直線l的方程為y=-x+m與橢圓聯(lián)立方程組可以得到
,再利用
可以結合韋達定理求解得到m的值和圓p的方程。
解:(Ⅰ)設橢圓E的方程為
①………………………………1分
②………………2分
③ 由①、②、③得a2=12,b2=6…………3分
所以橢圓E的方程為…………………………4分
(Ⅱ)依題意,直線OC斜率為1,由此設直線l的方程為y=-x+m,……………5分
代入橢圓E方程,得…………………………6分
………………………7分
、
………………8分
………………………9分
……………………………10分
當m=3時,直線l方程為y=-x+3,此時,x1 +x2=4,圓心為(2,1),半徑為2,
圓P的方程為(x-2)2+(y-1)2=4;………………………………11分
同理,當m=-3時,直線l方程為y=-x-3,
圓P的方程為(x+2)2+(y+1)2=4
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com