題目列表(包括答案和解析)
在△ABC中,內(nèi)角A、B、C所對(duì)邊的邊長(zhǎng)分別是a、b、c,已知c=2,C=.
(Ⅰ)若△ABC的面積等于,求a、b;
(Ⅱ)若,求△ABC的面積.
【解析】第一問(wèn)中利用余弦定理及已知條件得又因?yàn)椤鰽BC的面積等于
,所以
,得
聯(lián)立方程,解方程組得
.
第二問(wèn)中。由于即為即
.
當(dāng)時(shí),
,
,
,
所以
當(dāng)
時(shí),得
,由正弦定理得
,聯(lián)立方程組
,解得
,得到
。
解:(Ⅰ) (Ⅰ)由余弦定理及已知條件得,………1分
又因?yàn)椤鰽BC的面積等于,所以
,得
,………1分
聯(lián)立方程,解方程組得.
……………2分
(Ⅱ)由題意得,
即.
…………2分
當(dāng)時(shí),
,
,
,
……1分
所以 ………………1分
當(dāng)時(shí),得
,由正弦定理得
,聯(lián)立方程組
,解得
,
;
所以
已知,(其中
)
⑴求及
;
⑵試比較與
的大小,并說(shuō)明理由.
【解析】第一問(wèn)中取,則
;
…………1分
對(duì)等式兩邊求導(dǎo),得
取,則
得到結(jié)論
第二問(wèn)中,要比較與
的大小,即比較:
與
的大小,歸納猜想可得結(jié)論當(dāng)
時(shí),
;
當(dāng)時(shí),
;
當(dāng)時(shí),
;
猜想:當(dāng)時(shí),
運(yùn)用數(shù)學(xué)歸納法證明即可。
解:⑴取,則
;
…………1分
對(duì)等式兩邊求導(dǎo),得,
取,則
。 …………4分
⑵要比較與
的大小,即比較:
與
的大小,
當(dāng)時(shí),
;
當(dāng)時(shí),
;
當(dāng)時(shí),
;
…………6分
猜想:當(dāng)時(shí),
,下面用數(shù)學(xué)歸納法證明:
由上述過(guò)程可知,時(shí)結(jié)論成立,
假設(shè)當(dāng)時(shí)結(jié)論成立,即
,
當(dāng)時(shí),
而
∴
即時(shí)結(jié)論也成立,
∴當(dāng)時(shí),
成立。
…………11分
綜上得,當(dāng)時(shí),
;
當(dāng)時(shí),
;
當(dāng)時(shí),
設(shè)橢圓的左、右頂點(diǎn)分別為
,點(diǎn)
在橢圓上且異于
兩點(diǎn),
為坐標(biāo)原點(diǎn).
(Ⅰ)若直線與
的斜率之積為
,求橢圓的離心率;
(Ⅱ)若,證明直線
的斜率
滿足
【解析】(1)解:設(shè)點(diǎn)P的坐標(biāo)為.由題意,有
①
由,得
,
由,可得
,代入①并整理得
由于,故
.于是
,所以橢圓的離心率
(2)證明:(方法一)
依題意,直線OP的方程為,設(shè)點(diǎn)P的坐標(biāo)為
.
由條件得消去
并整理得
②
由,
及
,
得.
整理得.而
,于是
,代入②,
整理得
由,故
,因此
.
所以.
(方法二)
依題意,直線OP的方程為,設(shè)點(diǎn)P的坐標(biāo)為
.
由P在橢圓上,有
因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012071821180638818491/SYS201207182118494193384555_ST.files/image036.png">,,所以
,即
③
由,
,得
整理得
.
于是,代入③,
整理得
解得,
所以.
如圖是單位圓
上的點(diǎn),
分別是圓
與
軸的兩交點(diǎn),
為正三角形.
(1)若點(diǎn)坐標(biāo)為
,求
的值;
(2)若,四邊形
的周長(zhǎng)為
,試將
表示成
的函數(shù),并求出
的最大值.
【解析】第一問(wèn)利用設(shè)
∵ A點(diǎn)坐標(biāo)為∴
,
(2)中 由條件知 AB=1,CD=2 ,
在中,由余弦定理得
∴
∵ ∴
,
∴ 當(dāng)時(shí),即
當(dāng)
時(shí) , y有最大值5. .
附加題) 某電視臺(tái)的一個(gè)智力游戲節(jié)目中,有一道將四本由不同作者所著的外國(guó)名著A、B、C、D與它們的作者連線的題目,每本名著只能與一名作者連線,每名作者也只能與一本名著連線。每連對(duì)一個(gè)得3分,連錯(cuò)得一1分,一名觀眾隨意連線,他的得分記作X。
(1)求該觀眾得分非負(fù)的概率;
(2)求X的分布列及數(shù)學(xué)期望。
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com