題目列表(包括答案和解析)
(本小題滿分14分)
已知函數(shù)。
(1)證明:
(2)若數(shù)列的通項(xiàng)公式為
,求數(shù)列
的前
項(xiàng)和
;w.w.w.k.s.5.u.c.o.m
(3)設(shè)數(shù)列滿足:
,設(shè)
,
若(2)中的滿足對(duì)任意不小于2的正整數(shù)
,
恒成立,
試求的最大值。
(本小題滿分14分)已知,點(diǎn)
在
軸上,點(diǎn)
在
軸的正半軸,點(diǎn)
在直線
上,且滿足
,
. w.w.w.k.s.5.u.c.o.m
(Ⅰ)當(dāng)點(diǎn)在
軸上移動(dòng)時(shí),求動(dòng)點(diǎn)
的軌跡
方程;
(本小題滿分14分)設(shè)函數(shù)
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若當(dāng)時(shí),不等式
恒成立,求實(shí)數(shù)
的取值范圍;w.w.w.k.s.5.u.c.o.m
(本小題滿分14分)
已知,其中
是自然常數(shù),
(1)討論時(shí),
的單調(diào)性、極值;w.w.w.k.s.5.u.c.o.m
(2)求證:在(1)的條件下,;
(3)是否存在實(shí)數(shù),使
的最小值是3,若存在,求出
的值;若不存在,說(shuō)明理由.
(本小題滿分14分)
設(shè)數(shù)列的前
項(xiàng)和為
,對(duì)任意的正整數(shù)
,都有
成立,記
。
(I)求數(shù)列的通項(xiàng)公式;
(II)記,設(shè)數(shù)列
的前
項(xiàng)和為
,求證:對(duì)任意正整數(shù)
都有
;
(III)設(shè)數(shù)列的前
項(xiàng)和為
。已知正實(shí)數(shù)
滿足:對(duì)任意正整數(shù)
恒成立,求
的最小值。
題 號(hào)
1
2
3
4
5
6
7
8
9
10
答 案
11. ;
12.
;
13.
或
或
; 14.
; 15.
.
三、解答題(本大題共6小題,共75分)
16.(本小題滿分12分)
已知向量,
(
,
).函數(shù)
,
的圖象的一個(gè)對(duì)稱中心與它相鄰的一條對(duì)稱軸之間的距離為
,且過(guò)點(diǎn)
.
(Ⅰ)求函數(shù)的表達(dá)式;
(Ⅱ)當(dāng)時(shí),求函數(shù)
的單調(diào)區(qū)間。
【解】(Ⅰ)
…………3′
由題意得周期,故
.…………4′
又圖象過(guò)點(diǎn),∴
即,而
,∴
,∴
………6′
(Ⅱ)當(dāng)時(shí),
∴當(dāng)時(shí),即
時(shí),
是減函數(shù)
當(dāng)時(shí),即
時(shí),
是增函數(shù)
∴函數(shù)的單調(diào)減區(qū)間是
,單調(diào)增區(qū)間是
…………12′
17.(本小題滿分12分)
在某社區(qū)舉辦的《2008奧運(yùn)知識(shí)有獎(jiǎng)問(wèn)答比賽》中,甲、乙、丙三人同時(shí)回答一道有關(guān)奧運(yùn)知識(shí)的問(wèn)題,已知甲回答這道題對(duì)的概率是,甲、丙兩人都回答錯(cuò)的概率是
,乙、丙兩人都回答對(duì)的概率是
.
(Ⅰ)求乙、丙兩人各自回答這道題對(duì)的概率;
(Ⅱ)用表示回答該題對(duì)的人數(shù),求
的分布列和數(shù)學(xué)期望
.
【解】(Ⅰ)記“甲回答對(duì)這道題”、“ 乙回答對(duì)這道題”、“丙回答對(duì)這道題”分別為事件、
、
,則
,且有
,即
∴,
.…………6′
(Ⅱ)由(Ⅰ),
.
的可能取值為:
、
、
、
.
則;
;
;
.…………9′
∴的分布列為
的數(shù)學(xué)期望
.…………12′
18.(本小題滿分12分)如圖,已知正三棱柱各棱長(zhǎng)都為
,
為棱
上的動(dòng)點(diǎn)。
(Ⅰ)試確定的值,使得
;(Ⅱ)若
,求二面角
的大。
(Ⅲ)在(Ⅱ)的條件下,求點(diǎn)到面
的距離。
【法一】(Ⅰ)當(dāng)時(shí),作
在
上的射影
. 連結(jié)
.
則平面
,∴
,∴
是
的中點(diǎn),又
,∴
也是
的中點(diǎn),
即. 反之當(dāng)
時(shí),取
的中點(diǎn)
,連接
、
.
∵為正三角形,∴
. 由于
為
的中點(diǎn)時(shí),
∵
平面
,∴
平面
,∴
.……4′
(Ⅱ)當(dāng)時(shí),作
在
上的射影
. 則
底面
.
作在
上的射影
,連結(jié)
,則
.
∴為二面角
的平面角。
又∵,∴
,∴
.
∴,又∵
,∴
.
∴,∴
的大小為
.…8′
(Ⅲ)設(shè)到面
的距離為
,則
,∵
,∴
平面
,
∴即為
點(diǎn)到平面
的距離,
又,∴
.
即
,解得
.即
到面
的距離為
.……12′
【法二】以為原點(diǎn),
為
軸,過(guò)
點(diǎn)與
垂直的直線為
軸,
為
軸,建立空間直角坐標(biāo)系
,如圖所示,
設(shè),則
、
、
.
(Ⅰ)由得
,
即,∴
,即
為
的中點(diǎn),
也即時(shí),
.…………4′
(Ⅱ)當(dāng)時(shí),
點(diǎn)的坐標(biāo)是
. 取
.
則,
.
∴是平面
的一個(gè)法向量。
又平面的一個(gè)法向量為
.
∴,∴二面角
的大小是
.……8′
(Ⅲ)設(shè)到面
的距離為
,則
,∴
到面
的距離為
.…12′
19.(本小題滿分12分)
已知函數(shù).
(Ⅰ)求函數(shù)的單調(diào)區(qū)間和極值;
(Ⅱ)若對(duì)滿足
的任意實(shí)數(shù)
恒成立,求實(shí)數(shù)
的取值范圍(這里
是自然對(duì)數(shù)的底數(shù));
(Ⅲ)求證:對(duì)任意正數(shù)、
、
、
,恒有
.
【解】(Ⅰ)
∴的增區(qū)間為
,
減區(qū)間為
和
.
極大值為,極小值為
.…………4′
(Ⅱ)原不等式可化為由(Ⅰ)知,
時(shí),
的最大值為
.
∴的最大值為
,由恒成立的意義知道
,從而
…8′
(Ⅲ)設(shè)
則.
∴當(dāng)時(shí),
,故
在
上是減函數(shù),
又當(dāng)、
、
、
是正實(shí)數(shù)時(shí),
∴.
由的單調(diào)性有:
,
即.…………12′
20.(本小題滿分13分)
如圖,已知曲線與拋物線
的交點(diǎn)分別為
、
,曲線
和拋物線
在點(diǎn)
處的切線分別為
、
,且
、
的斜率分別為
、
.
(Ⅰ)當(dāng)為定值時(shí),求證
為定值(與
無(wú)關(guān)),并求出這個(gè)定值;
(Ⅱ)若直線與
軸的交點(diǎn)為
,當(dāng)
取得最小值
時(shí),求曲線
和
的方程。
【解】(Ⅰ)設(shè)點(diǎn)的坐標(biāo)為
,
由得:
則,∴
…………2′
由得
,∴
…………4′
∴
又∵,
,∴
.
∴
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com