題目列表(包括答案和解析)
已知.
(1)求的單調(diào)區(qū)間;
(2)證明:當(dāng)時(shí),
恒成立;
(3)任取兩個(gè)不相等的正數(shù),且
,若存在
使
成立,證明:
.
【解析】(1)g(x)=lnx+,
=
(1’)
當(dāng)k0時(shí),
>0,所以函數(shù)g(x)的增區(qū)間為(0,+
),無減區(qū)間;
當(dāng)k>0時(shí),>0,得x>k;
<0,得0<x<k∴增區(qū)間(k,+
)減區(qū)間為(0,k)(3’)
(2)設(shè)h(x)=xlnx-2x+e(x1)令
= lnx-1=0得x=e, 當(dāng)x變化時(shí),h(x),
的變化情況如表
x |
1 |
(1,e) |
e |
(e,+ |
|
|
- |
0 |
+ |
h(x) |
e-2 |
|
0 |
↗ |
所以h(x)0, ∴f(x)
2x-e
(5’)
設(shè)G(x)=lnx-(x
1)
=
=
0,當(dāng)且僅當(dāng)x=1時(shí),
=0所以G(x) 為減函數(shù), 所以G(x)
G(1)=0, 所以lnx-
0所以xlnx
(x
1)成立,所以f(x)
,綜上,當(dāng)x
1時(shí), 2x-e
f(x)
恒成立.
(3) ∵=lnx+1∴l(xiāng)nx0+1=
=
∴l(xiāng)nx0=
-1
∴l(xiāng)nx0 –lnx
=
-1–lnx
=
=
=
(10’) 設(shè)H(t)=lnt+1-t(0<t<1),
=
=
>0(0<t<1), 所以H(t) 在(0,1)上是增函數(shù),并且H(t)在t=1處有意義, 所以H(t)
<H(1)=0∵
∴
=
∴l(xiāng)nx0 –lnx>0, ∴x0 >x
已知,函數(shù)
(1)當(dāng)時(shí),求函數(shù)
在點(diǎn)(1,
)的切線方程;
(2)求函數(shù)在[-1,1]的極值;
(3)若在上至少存在一個(gè)實(shí)數(shù)x0,使
>g(xo)成立,求正實(shí)數(shù)
的取值范圍。
【解析】本試題中導(dǎo)數(shù)在研究函數(shù)中的運(yùn)用。(1)中,那么當(dāng)
時(shí),
又
所以函數(shù)
在點(diǎn)(1,
)的切線方程為
;(2)中令
有
對a分類討論,和
得到極值。(3)中,設(shè)
,
,依題意,只需
那么可以解得。
解:(Ⅰ)∵ ∴
∴ 當(dāng)時(shí),
又
∴ 函數(shù)在點(diǎn)(1,
)的切線方程為
--------4分
(Ⅱ)令 有
①
當(dāng)即
時(shí)
|
(-1,0) |
0 |
(0, |
|
( |
|
+ |
0 |
- |
0 |
+ |
|
|
極大值 |
|
極小值 |
|
故的極大值是
,極小值是
②
當(dāng)即
時(shí),
在(-1,0)上遞增,在(0,1)上遞減,則
的極大值為
,無極小值。
綜上所述 時(shí),極大值為
,無極小值
時(shí) 極大值是
,極小值是
----------8分
(Ⅲ)設(shè),
對求導(dǎo),得
∵,
∴ 在區(qū)間
上為增函數(shù),則
依題意,只需,即
解得 或
(舍去)
則正實(shí)數(shù)的取值范圍是(
,
)
(2009全國卷Ⅱ文)(本小題滿分12分)
|
|
(Ⅰ)求a,b的值;
(Ⅱ)C上是否存在點(diǎn)P,使得當(dāng)l繞F轉(zhuǎn)到某一位置時(shí),有成立?
若存在,求出所有的P的坐標(biāo)與l的方程;若不存在,說明理由。
解析:本題考查解析幾何與平面向量知識綜合運(yùn)用能力,第一問直接運(yùn)用點(diǎn)到直線的距離公式以及橢圓有關(guān)關(guān)系式計(jì)算,第二問利用向量坐標(biāo)關(guān)系及方程的思想,借助根與系數(shù)關(guān)系解決問題,注意特殊情況的處理。
(2009全國卷Ⅱ文)(本小題滿分12分)
|
|
(Ⅰ)求a,b的值;
(Ⅱ)C上是否存在點(diǎn)P,使得當(dāng)l繞F轉(zhuǎn)到某一位置時(shí),有成立?
若存在,求出所有的P的坐標(biāo)與l的方程;若不存在,說明理由。
解析:本題考查解析幾何與平面向量知識綜合運(yùn)用能力,第一問直接運(yùn)用點(diǎn)到直線的距離公式以及橢圓有關(guān)關(guān)系式計(jì)算,第二問利用向量坐標(biāo)關(guān)系及方程的思想,借助根與系數(shù)關(guān)系解決問題,注意特殊情況的處理。
(09年山東省實(shí)驗(yàn)中學(xué)綜合測試?yán)?(本小題滿分13分)已知橢圓的兩焦點(diǎn)與短軸的一個(gè)端點(diǎn)的連線構(gòu)成等腰直角三角形,直線
是拋物線
的一條切線.
(1)求橢圓的方程;
(2)過點(diǎn)的動(dòng)直線L交橢圓C于A、B兩點(diǎn),試問:在坐標(biāo)平面上是否存在一
個(gè)定點(diǎn)T,使得以AB為直徑的圓恒過點(diǎn)T?若存在,求出點(diǎn)T的坐標(biāo);若不存在,
請說明理由.
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com