題目列表(包括答案和解析)
(本小題滿分14分)
已知函數(shù)。
(1)證明:
(2)若數(shù)列的通項公式為
,求數(shù)列
的前
項和
;w.w.w.k.s.5.u.c.o.m
(3)設數(shù)列滿足:
,設
,
若(2)中的滿足對任意不小于2的正整數(shù)
,
恒成立,
試求的最大值。
(本小題滿分14分)已知,點
在
軸上,點
在
軸的正半軸,點
在直線
上,且滿足
,
. w.w.w.k.s.5.u.c.o.m
(Ⅰ)當點在
軸上移動時,求動點
的軌跡
方程;
(本小題滿分14分)設函數(shù)
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若當時,不等式
恒成立,求實數(shù)
的取值范圍;w.w.w.k.s.5.u.c.o.m
(本小題滿分14分)
已知,其中
是自然常數(shù),
(1)討論時,
的單調(diào)性、極值;w.w.w.k.s.5.u.c.o.m
(2)求證:在(1)的條件下,;
(3)是否存在實數(shù),使
的最小值是3,若存在,求出
的值;若不存在,說明理由.
(本小題滿分14分)
設數(shù)列的前
項和為
,對任意的正整數(shù)
,都有
成立,記
。
(I)求數(shù)列的通項公式;
(II)記,設數(shù)列
的前
項和為
,求證:對任意正整數(shù)
都有
;
(III)設數(shù)列的前
項和為
。已知正實數(shù)
滿足:對任意正整數(shù)
恒成立,求
的最小值。
一.選擇題(本大題共12小題,每小題5分,共60分.)
D C B B C D C A C C A A
二.填空題(本大題共4小題,每小題4分,共16分.)
(13) (14)
(15)―1 (16)
三.解答題
(17)(本小題滿分12分)
解:(Ⅰ):
. 3分
依題意,的周期
,且
,∴
.∴
.
∴ . 5分
∵ [0,
], ∴
≤
≤
,∴
≤
≤1,
∴ 的最小值為
,即
∴
.
∴ . 7分
(Ⅱ)∵ =2
, ∴
.
又 ∵ ∠∈(0,
), ∴ ∠
=
. 9分
在△ABC中,∵
,
,
∴ ,
.解得
.
又 ∵ 0, ∴
. 12分
(18)(本小題滿分12分)
解:以A點為原點,AB為軸,AD為
軸,AD
為軸的空間直角坐標系,如圖所示.則依題意可知相
關(guān)各點的坐標分別是A(0,0,0),B(,0,0),
C(,1,0),D(0,1,0),S(0,0,1),
∴ M(,1,0),N(
,
,
). 2分
∴ (0,
,
),
(
,0,0),
(
,
,
). 4分
∴ ,
.∴
,
.
∴ MN ⊥平面ABN. 6分
(Ⅱ)設平面NBC的法向量為(
,
,
),則
,
.且又易知
,
.
∴ 即
∴
令,則
(
,0,
). 9分
顯然,(0,
,
)就是平面ABN的法向量.
∴ .
∴ 二面角的余弦值是
. 12分
(19)(本小題滿分12分)
解:(Ⅰ)由題意得
(
); 3分
同理可得(
);
(
). 5分
(Ⅱ). 8分
(Ⅲ)由上問知
,即
是關(guān)于
的三次函數(shù),設
,則
.
令,解得
或
(不合題意,舍去).
顯然當 時,
;當
時,
.
∴ 當年產(chǎn)量
時,隨機變量
的期望
取得最大值. 12分
(20)(本小題滿分12分)
解:(Ⅰ)設(
,
)是函數(shù)
的圖象上任意一點,則容易求得
點關(guān)于直線
的對稱點為
(
,
),依題意點
(
,
)在
的圖象上,
∴
. ∴
. 2分
∴
.
∵ 是
的一個極值點,∴
,解得
.
∴ 函數(shù) 的表達式是
(
). 4分
∴
.
∵ 函數(shù) 的定義域為(
), ∴
只有
一個極值點,且顯然當
時,
;當
時,
.
∴ 函數(shù) 的單調(diào)遞增區(qū)間是
;單調(diào)遞減區(qū)間是
. 6分
(Ⅱ)由 ,
得
,∴
. 9分
∴ 在
時恒成立.
∴
只需求出 在
時的最大值和
在
時的最小值,即可求得
的取值范圍.
∵ (當
時);
(當
時).
∴
的取值范圍是
.
12分
(21)(本小題滿分12分)
解:(Ⅰ)∵ ,
∴.
設O關(guān)于直線 的
對稱點為的橫坐標為
.
又易知直線 解得線段
的中點坐標
為(1,-3).∴.
∴ 橢圓方程為 . 5分
(Ⅱ)顯然直線AN存在斜率,設直線AN的方程為 ,代入
并整理得:
.
設點,
,則
.
由韋達定理得 ,
. 8分
∵ 直線ME方程為 ,令
,得直線ME與x軸的交點的橫坐標
.
將,
代入,并整理得
. 10分
再將韋達定理的結(jié)果代入,并整理可得.
∴ 直線ME與軸相交于定點(
,0). 12分
(22)(本小題滿分14分)
證明:(Ⅰ)∵
,
,且
(
,
N?),
∴
. 2分
將
去分母,并整理得
. 5分
∴
,
,……,
,
將這個同向不等式相加,得
,∴
. 7分
(Ⅱ)∵
,∴
. 9分
∴
.即
. 11分
∴ ,即
. 14分
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com