題目列表(包括答案和解析)
設F1、F2分別為橢圓C:=1(a>b>0)的左、右兩個焦點.
(1)若橢圓C上的點A(1,)到F1、F2兩點的距離之和等于4,寫出橢圓C的方程和焦點坐標;
(2)設點K是(1)中所得橢圓上的動點,求線段F1K的中點的軌跡方程;
(3)已知橢圓具有性質:若M、N是橢圓C上關于原點對稱的兩個點,點P是橢圓上任意一點,當直線PM、PN的斜率都存在,并記為kPM、kPN時,那么kPM與kPN之積是與點P位置無關的定值,試寫出雙曲線=1具有類似特性的性質并加以證明.
設F1、F2分別為橢圓C:=1(a>b>0)的左、右兩個焦點.
(1)若橢圓C上的點A(1,)到F1、F2兩點的距離之和等于4,寫出橢圓C的方程和焦點坐標;
(2)設點K是(1)中所得橢圓上的動點,求線段F1K的中點的軌跡方程;
(3)已知橢圓具有性質:若M、N是橢圓C上關于原點對稱的兩個點,點P是橢圓上任意一點,當直線PM、PN的斜率都存在,并記為kPM、kPN時,那么kPM與kPN之積是與點P位置無關的定值,試寫出雙曲線=1具有類似特性的性質并加以證明.
某同學對函數f(x)=xcosx進行研究后,得出以下五個結論:
①函數y=f(x)的圖象是中心對稱圖形;
②對任意實數x,|f(x)|≤|x|均成立;
③函數y=f(x)的圖象與x軸有無窮多個公共點,且任意相鄰兩點的距離相等;
④函數y=f(x)的圖象與直線y=x有無窮多個公共點,且任意相鄰兩點的距離相等;
⑤當常數k滿足|k|>1時,函數y=f(x)的圖象與直線y=kx有且僅有一個公共點.
其中所有正確結論的序號是
①②④
①②③④
①②④⑤
①②③④⑤
已知f(x)是定義在(-∞,+∞)上且以2為周期的函數,當x∈[0,2]時,其解析式為f(x)=|x-1|.
(Ⅰ)作出f(x)在(-∞,+∞)上的圖像;(注:請將圖像畫在模擬答題卡所給出的直角坐標系中.)
(Ⅱ)寫出f(x)在[2k,2k+2](k∈Z)上的解析式,并證明f(x)是偶函數.
給出以下4個命題,其中所有正確結論的序號是________.
(1)當a為任意實數時,直線(a-1)x-y+2a+1=0恒過定點P,則焦點在y軸上且過點P的拋物線的標準方程是x2=y.
(2)若直線l1+2kx+(k+1)y+1=0與直線l2:x-ky+2=0垂直,則實數k=1;
(3)已知數列{an}對于任意p,q∈N*,有ap+aq=ap+q,若a1=,則a36=4
(4)對于一切實數x,令[x]為不大于x的最大整數,例如:[3.05]=3,[]=1,則函數f(x)=[x]稱為高斯函數或取整函數,若an=f(
)(n∈N*),Sn為數列{an}的前n項和,則S30=145
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com