題目列表(包括答案和解析)
已知中心在原點(diǎn),焦點(diǎn)在軸上的橢圓
的離心率為
,且經(jīng)過(guò)點(diǎn)
.
(Ⅰ)求橢圓的方程;
(Ⅱ)是否存過(guò)點(diǎn)(2,1)的直線
與橢圓
相交于不同的兩點(diǎn)
,滿(mǎn)足
?若存在,求出直線
的方程;若不存在,請(qǐng)說(shuō)明理由.
【解析】第一問(wèn)利用設(shè)橢圓的方程為
,由題意得
解得
第二問(wèn)若存在直線滿(mǎn)足條件的方程為
,代入橢圓
的方程得
.
因?yàn)橹本與橢圓
相交于不同的兩點(diǎn)
,設(shè)
兩點(diǎn)的坐標(biāo)分別為
,
所以
所以.解得。
解:⑴設(shè)橢圓的方程為
,由題意得
解得,故橢圓
的方程為
.……………………4分
⑵若存在直線滿(mǎn)足條件的方程為
,代入橢圓
的方程得
.
因?yàn)橹本與橢圓
相交于不同的兩點(diǎn)
,設(shè)
兩點(diǎn)的坐標(biāo)分別為
,
所以
所以.
又,
因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912284792138316/SYS201207091229220620471975_ST.files/image009.png">,即,
所以.
即.
所以,解得
.
因?yàn)锳,B為不同的兩點(diǎn),所以k=1/2.
于是存在直線L1滿(mǎn)足條件,其方程為y=1/2x
已知曲線C:(m∈R)
(1) 若曲線C是焦點(diǎn)在x軸點(diǎn)上的橢圓,求m的取值范圍;
(2) 設(shè)m=4,曲線c與y軸的交點(diǎn)為A,B(點(diǎn)A位于點(diǎn)B的上方),直線y=kx+4與曲線c交于不同的兩點(diǎn)M、N,直線y=1與直線BM交于點(diǎn)G.求證:A,G,N三點(diǎn)共線。
【解析】(1)曲線C是焦點(diǎn)在x軸上的橢圓,當(dāng)且僅當(dāng)解得
,所以m的取值范圍是
(2)當(dāng)m=4時(shí),曲線C的方程為,點(diǎn)A,B的坐標(biāo)分別為
,
由,得
因?yàn)橹本與曲線C交于不同的兩點(diǎn),所以
即
設(shè)點(diǎn)M,N的坐標(biāo)分別為,則
直線BM的方程為,點(diǎn)G的坐標(biāo)為
因?yàn)橹本AN和直線AG的斜率分別為
所以
即,故A,G,N三點(diǎn)共線。
設(shè)橢圓 :
(
)的一個(gè)頂點(diǎn)為
,
,
分別是橢圓的左、右焦點(diǎn),離心率
,過(guò)橢圓右焦點(diǎn)
的直線
與橢圓
交于
,
兩點(diǎn).
(1)求橢圓的方程;
(2)是否存在直線 ,使得
,若存在,求出直線
的方程;若不存在,說(shuō)明理由;
【解析】本試題主要考查了橢圓的方程的求解,以及直線與橢圓的位置關(guān)系的運(yùn)用。(1)中橢圓的頂點(diǎn)為,即
又因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012061917121082894691/SYS201206191714546570844292_ST.files/image015.png">,得到
,然后求解得到橢圓方程(2)中,對(duì)直線分為兩種情況討論,當(dāng)直線斜率存在時(shí),當(dāng)直線斜率不存在時(shí),聯(lián)立方程組,結(jié)合
得到結(jié)論。
解:(1)橢圓的頂點(diǎn)為,即
,解得
,
橢圓的標(biāo)準(zhǔn)方程為
--------4分
(2)由題可知,直線與橢圓必相交.
①當(dāng)直線斜率不存在時(shí),經(jīng)檢驗(yàn)不合題意. --------5分
②當(dāng)直線斜率存在時(shí),設(shè)存在直線為
,且
,
.
由得
, ----------7分
,
,
=
所以,
----------10分
故直線的方程為
或
即或
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com