8天堂资源在线,国产成人久久av免费高潮,国产精品亚洲综合色区韩国,国产欧美va天堂在线观看视频,xx色综合

.且該函數的最小正周期是 (1)求ω的值, (2)求函數f(x)的最大值.并且求使f(x)取得最大的值的x的集合. 20090323 (1)求他不需要補過就可以獲得獎品的概率, (2)在參加這項活動過程中.假設他不放棄所有的過關機會.記他參加沖關的次數為ξ.求ξ的數學期望Eξ. 查看更多

 

題目列表(包括答案和解析)

已知函數的圖象與y軸相交于點M,且該函數的最小正周期為

(1)求的值;

(2)已知點,點P是該函數圖象上一點,點是PA的中點,當時,求x0的值.

查看答案和解析>>

已知函數f(x)=
3
sin(2ωx-
π
3
)+b
,且該函數圖象的對稱中心和對稱軸的最小距離為
π
4
,當x∈[0,
π
3
]
時,f(x)的最大值為
5
2

(1)求f(x)的解析式.
(2)畫出f(x)在長度為一個周期內的簡圖(直接畫圖,不用列表).
(3)分步說明該函數的圖象是由正弦曲線經過怎樣的變化得到的.

查看答案和解析>>

已知函數y=2cos(ωx+θ)(x∈R,ω>0,0≤θ≤
π
2
)的圖象與y軸相交于點M(0,
3
),且該函數的最小正周期為π.
(1)求θ和ω的值;
(2)已知點A(
π
2
,0),點P是該函數圖象上一點,點Q(x0,y0)是PA的中點,當y0=
3
2
,x0∈[
π
2
,π]時,求x0的值.

查看答案和解析>>

如圖,函數的圖象與軸相交于點,且該函數的最小正周期為

(1)、求的值;

(2)、已知點,點是該函數圖象上一點,

的中點,當,時,求的值.

 

查看答案和解析>>

如圖,函數的圖象與軸相交于點,且該函數的最小正周期為

(1)、求的值;
(2)、已知點,點是該函數圖象上一點,
的中點,當,時,求的值.

查看答案和解析>>

 

一、選擇題(本大題共12個小題,每小題5分,共60分)

    1―5  BCBAB    6―10  CDBDD   11―12AB

20090323

13.9

14.

15.(1,0)

16.420

三、解答題:

17.解:(1)

   (2)由(1)知,

       

18.解:設“通過第一關”為事件A1,“補過且通過第一關”為事件A2,“通過第二關”為事件B1,“補過且通過第二關”為事件B2。             (2分)

   (1)不需要補過就可獲得獎品的事件為A=A1?B1,又A1與B1相互獨立,則P(A)=P

(A1?B1)=P(A1)?P(B1)=。故他不需要補過就可獲得獎品的概率為。

(6分)

   (2)由已知得ξ=2,3,4,注意到各事件之間的獨立性與互斥性,可得

       

19.解法:1:(1)

   (2)過E作EF⊥PC,垂足為F,連結DF。             (8分)

由Rt△EFC∽

<sub id="ptvln"><input id="ptvln"></input></sub>

  • <sub id="ptvln"></sub>

    解法2:(1)

       (2)設平面PCD的法向量為

            則

               解得   

    AC的法向量取為

     角A―PC―D的大小為

    20.(1)由已知得    

      是以a2為首項,以

        (6分)

       (2)證明:

       

    21:解(1)由線方程x+2y+10-6ln2=0知,

        直線斜率為

      

        所以   解得a=4,b=3。    (6分)

       (2)由(1)得

    22.解:(1)設直線l的方程為

    因為直線l與橢圓交點在y軸右側,

    所以  解得2

    l直線y截距的取值范圍為。          (4分)

       (2)①(Ⅰ)當AB所在的直線斜率存在且不為零時,

    設AB所在直線方程為

    解方程組           得

    所以

    所以

    因為l是AB的垂直平分線,所以直線l的方程為

     

    因此

     又

       (Ⅱ)當k=0或不存在時,上式仍然成立。

    綜上所述,M的軌跡方程為(λ≠0)。  (9分)

    ②當k存在且k≠0時,由(1)得

      解得

    所以

    解法:(1)由于

    當且僅當4+5k2=5+4k2,即k≠±1時等號成立,

    此時,

     

    當k不存在時,

    綜上所述,                      (14分)

    解法(2):

    因為

    當且僅當4+5k2=5+4k2,即k≠±1時等號成立,

    此時。

    當k不存在時,

    綜上所述,。