題目列表(包括答案和解析)
己知在銳角ΔABC中,角所對的邊分別為
,且
(I )求角大;
(II)當(dāng)時,求
的取值范圍.
20.如圖1,在平面內(nèi),是
的矩形,
是正三角形,將
沿
折起,使
如圖2,
為
的中點(diǎn),設(shè)直線
過點(diǎn)
且垂直于矩形
所在平面,點(diǎn)
是直線
上的一個動點(diǎn),且與點(diǎn)
位于平面
的同側(cè)。
(1)求證:平面
;
(2)設(shè)二面角的平面角為
,若
,求線段
長的取值范圍。
![]() |
21.已知A,B是橢圓的左,右頂點(diǎn),
,過橢圓C的右焦點(diǎn)F的直線交橢圓于點(diǎn)M,N,交直線
于點(diǎn)P,且直線PA,PF,PB的斜率成等差數(shù)列,R和Q是橢圓上的兩動點(diǎn),R和Q的橫坐標(biāo)之和為2,RQ的中垂線交X軸于T點(diǎn)
(1)求橢圓C的方程;
(2)求三角形MNT的面積的最大值
22. 已知函數(shù)
,
(Ⅰ)若在
上存在最大值與最小值,且其最大值與最小值的和為
,試求
和
的值。
(Ⅱ)若為奇函數(shù):
(1)是否存在實(shí)數(shù),使得
在
為增函數(shù),
為減函數(shù),若存在,求出
的值,若不存在,請說明理由;
(2)如果當(dāng)時,都有
恒成立,試求
的取值范圍.
設(shè)直線l與拋物線y2=2px(p>0)交于A、B兩點(diǎn),已知當(dāng)直線l經(jīng)過拋物線的焦點(diǎn)且與x軸垂直時,△OAB的面積為(O為坐標(biāo)原點(diǎn)).
(Ⅰ)求拋物線的方程;
(Ⅱ)當(dāng)直線l經(jīng)過點(diǎn)P(a,0)(a>0)且與x軸不垂直時,
若在x軸上存在點(diǎn)C,使得△ABC為等邊三角形,求a
的取值范圍.
動點(diǎn)的軌跡
的方程為
,過焦點(diǎn)
的直線
與
相交于
兩點(diǎn),
為坐標(biāo)原點(diǎn)。(1)求
的值;
(2)設(shè),當(dāng)三角形
的面積
時,求
的取值范圍.
(執(zhí)信中學(xué)、中山紀(jì)念中學(xué)、深圳外語)三校聯(lián)考 09.02
一.選擇題:
二.填空題:9.1;
10.15;
11.
13.;
14.
;
15.
.
三.解答題:
16.(1)=
=
2分
==
4分
6分
(2)=
=
==
9分
由,得
10分
11分
當(dāng)
, 即
時,
12分
17.(1)由已知,的取值為
.
2分
,
,
,
8分
7
8
9
10
的分布列為:
9分
(2) 11分
12分
18.(1)由.且
得
2分
,
4分
在中,令
得
當(dāng)
時,T
=
,
兩式相減得,
6分
.
8分
(2),
9分
,
, 10分
=2
=,
13分
14分
19、(Ⅰ)在梯形中,
,
四邊形
是等腰梯形,
且
2分
又平面
平面
,交線為
,
平面
4分
(Ⅱ)解法一、當(dāng)時,
平面
,
5分
在梯形中,設(shè)
,連接
,則
6分
,而
,
7分
,
四邊形
是平行四邊形,
8分
又平面
,
平面
平面
9分
解法二:當(dāng)時,
平面
,
由(Ⅰ)知,以點(diǎn)為原點(diǎn),
所在直線為坐標(biāo)軸,建立空間直角坐標(biāo)系, 5分
則
,
,
,
,
,
平面
,
平面
與
、
共面,
|