題目列表(包括答案和解析)
解:(Ⅰ)設(shè):
,其半焦距為
.則
:
.
由條件知,得
.
的右準(zhǔn)線方程為
,即
.
的準(zhǔn)線方程為
.
由條件知, 所以
,故
,
.
從而:
,
:
.
(Ⅱ)由題設(shè)知:
,設(shè)
,
,
,
.
由,得
,所以
.
而,由條件
,得
.
由(Ⅰ)得,
.從而,
:
,即
.
由,得
.所以
,
.
故.
已知函數(shù) f(x)=在[1,+∞)上為減函數(shù),求實(shí)數(shù)a的取值范圍.
【解析】本試題考查了導(dǎo)數(shù)在研究函數(shù)中的運(yùn)用。根據(jù)函數(shù)f(x)=在[1,+∞)上為減函數(shù),可知導(dǎo)函數(shù)在給定區(qū)間恒小于等于零,f ′(x)≤0在[1,+∞)上恒成立,lna≥1-lnx在[1,+∞)上恒成立.然后利用φ(x)=1-lnx,φ(x)max=1,從而得到a≥e
f ′(x)==
,因?yàn)椤(x)在[1,+∞)上為減函數(shù),故 f ′(x)≤0在[1,+∞)上恒成立,即lna≥1-lnx在[1,+∞)上恒成立.設(shè)φ(x)=1-lnx,φ(x)max=1,故lna≥1,a≥e,
已知數(shù)列的前
項(xiàng)和為
,且
(
N*),其中
.
(Ⅰ) 求的通項(xiàng)公式;
(Ⅱ) 設(shè) (
N*).
①證明: ;
② 求證:.
【解析】本試題主要考查了數(shù)列的通項(xiàng)公式的求解和運(yùn)用。運(yùn)用關(guān)系式,表示通項(xiàng)公式,然后得到第一問(wèn),第二問(wèn)中利用放縮法得到
,②由于
,
所以利用放縮法,從此得到結(jié)論。
解:(Ⅰ)當(dāng)時(shí),由
得
. ……2分
若存在由
得
,
從而有,與
矛盾,所以
.
從而由得
得
. ……6分
(Ⅱ)①證明:
證法一:∵∴
∴
∴.…………10分
證法二:,下同證法一.
……10分
證法三:(利用對(duì)偶式)設(shè),
,
則.又
,也即
,所以
,也即
,又因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012061921381634452104/SYS201206192140215789581034_ST.files/image037.png">,所以
.即
………10分
證法四:(數(shù)學(xué)歸納法)①當(dāng)時(shí),
,命題成立;
②假設(shè)時(shí),命題成立,即
,
則當(dāng)時(shí),
即
即
故當(dāng)時(shí),命題成立.
綜上可知,對(duì)一切非零自然數(shù),不等式②成立. ………………10分
②由于,
所以,
從而.
也即
已知等差數(shù)列{an}的首項(xiàng)為4,公差為4,其前n項(xiàng)和為Sn,則數(shù)列 {}的前n項(xiàng)和為( 。
| A. | | B. | | C. | | D. | |
考點(diǎn): | 數(shù)列的求和;等差數(shù)列的性質(zhì). |
專(zhuān)題: | 等差數(shù)列與等比數(shù)列. |
分析: | 利用等差數(shù)列的前n項(xiàng)和即可得出Sn,再利用“裂項(xiàng)求和”即可得出數(shù)列 { |
解答: | 解:∵Sn=4n+ ∴ ∴數(shù)列 { 故選A. |
點(diǎn)評(píng): | 熟練掌握等差數(shù)列的前n項(xiàng)和公式、“裂項(xiàng)求和”是解題的關(guān)鍵. |
2 |
2 |
2 |
a |
sinA |
b |
sinB |
asinB |
b |
xsin45° |
2 |
| ||
4 |
| ||
4 |
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com