8天堂资源在线,国产成人久久av免费高潮,国产精品亚洲综合色区韩国,国产欧美va天堂在线观看视频,xx色综合

22. 已知斜率為-1的直線l與橢圓C:4x2+5y2=20的交點在y軸右側. (1)求l直線的y截距的取值范圍, (2)設AB是過橢圓C中心的任意弦.l′是線段AB的垂直平分線.M是l′上異于橢圓中心的點.①若|MO|=λ|OA|(O為坐標原點),當點A在橢圓C上運動時,求點M的軌跡方程;②若M是l′與橢圓C的交點.求△AMB的面積的最小值. 查看更多

 

題目列表(包括答案和解析)

(本小題滿分14分)

已知:函數(shù)

(Ⅰ)若圖象上的點(1,)處的切線斜率為-4,求的極大值;

(Ⅱ)若在區(qū)間[-1,2]上是單調(diào)減函數(shù),求的最小值。

查看答案和解析>>

(本小題滿分14分)

已知:函數(shù) 。

(Ⅰ)若圖象上的點(1,)處的切線斜率為-4,求的極大值;

(Ⅱ)若在區(qū)間[-1,2]上是單調(diào)減函數(shù),求的最小值。

查看答案和解析>>

(本小題滿分14分)

已知定點A(1,0)和定直線x=-1的兩個動點E、F,滿足AE⊥AF,動點P滿足EP∥OA,F(xiàn)O∥OP(其中O為坐標原點).

(1)求動點P的軌跡C的方程;

(2)過點B(0,2)的直線l與(1)中軌跡C相交于兩個不同的點M、N,若∠MAN為鈍角,求直線l的斜率的取值范圍;

(3)過點T(-1,0)作直線m與(1)中的軌跡C交于兩點G、H,問在x軸上是否存在一點D,使△DGH為等邊三角形;若存在,試求出點D的坐標;若不存在,請說明理由.

查看答案和解析>>

(本小題滿分14分)

已知平面區(qū)域恰好被面積最小的圓C:(xa)2+(yb)2r2及其內(nèi)部所覆蓋。

(1)試求圓C的方程;

(2)若斜率為1的直線l與圓C交于不同兩點A、B,滿足CA⊥CB,求直線l的方程

查看答案和解析>>

(本小題滿分14分)

已知函數(shù) 。

(Ⅰ)若點(1,)在函數(shù)圖象上且函數(shù)在該點處的切線斜率為,求的極

大值;

(Ⅱ)若在區(qū)間[-1,2]上是單調(diào)減函數(shù),求的最小值

 

 

 

查看答案和解析>>

 

一、選擇題(本大題共12個小題,每小題5分,共60分)

    1―5  CABDC   6―10  DCCBB   11―12AB

二、填空題:

13.9

14.

15.(1,0)

16.420

三、解答題:

17.解:(1)

   (2)由(1)知,

       

18.解: 記“第i個人過關”為事件Aii=1,2,3),依題意有

    。

   (1)設“恰好二人過關”為事件B,則有

    且彼此互斥。

于是

=

   (2)設“有人過關”事件G,“無人過關”事件互相獨立,

  

19.解法:1:(1)

   (2)過E作EF⊥PC,垂足為F,連結DF。             (8分)

由Rt△EFC∽

    <sub id="8v0h3"></sub>
      • 解法2:(1)

           (2)設平面PCD的法向量為

                則

                   解得   

        AC的法向量取為

        角A―PC―D的大小為

        20.(1)由已知得    

          是以a2為首項,以

            (6分)

           (2)證明:

           

           (2)證明:由(1)知,

         

        21.解:(1)

        又直線

        (2)由(1)知,列表如下:

        x

        f

        +

        0

        0

        +

        fx

        學科網(wǎng)(Zxxk.Com)

        極大值

        學科網(wǎng)(Zxxk.Com)

        極小值

        學科網(wǎng)(Zxxk.Com)

         

          所以,函數(shù)fx)的單調(diào)增區(qū)間是

         

        22.解:(1)設直線l的方程為

        因為直線l與橢圓交點在y軸右側,

        所以  解得2

        l直線y截距的取值范圍為。          (4分)

           (2)①(Ⅰ)當AB所在的直線斜率存在且不為零時,

        設AB所在直線方程為

        解方程組           得

        所以

        所以

        因為l是AB的垂直平分線,所以直線l的方程為

         

        因此

           又

           (Ⅱ)當k=0或不存在時,上式仍然成立。

        綜上所述,M的軌跡方程為(λ≠0)。  (9分)

        ②當k存在且k≠0時,由(1)得

          解得

        所以

         

        解法:(1)由于

        當且僅當4+5k2=5+4k2,即k≠±1時等號成立,

        此時,

         

        當k不存在時,

         

        綜上所述,                      (14分)

        解法(2):

        因為

        當且僅當4+5k2=5+4k2,即k≠±1時等號成立,

        此時。

        當k不存在時,

        綜上所述,